Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Drift defined

Spray drift is defined for this topic by the National Coalition On Drift Minimization (NCODM) as The physical movement of pesticide through the air at the time of pesticide application or soon thereafter from the target site to any non- or off-target site . Secondary drift, defined by NCDOM as vapor drift or subsequent dust and particle movement after the application , is only partially addressed, although most key principles discussed will still also apply to such secondary movements. [Pg.974]

There are otlier teclmiques for mass separation such as tire quadmpole mass filter and Wien filter. Anotlier mass spectrometry teclmique is based on ion chromatography, which is also capable of measuring tire shapes of clusters [30, 31]. In tills metliod, cluster ions of a given mass are injected into a drift tube witli well-defined entrance and exit slits and filled witli an inert gas. The clusters drift tlirough tills tube under a weak electric potential. Since the... [Pg.2390]

In LN, the bonded interactions are treated by the approximate linearization, and the local nonbonded interactions, as well as the nonlocal interactions, are treated by constant extrapolation over longer intervals Atm and At, respectively). We define the integers fci,fc2 > 1 by their relation to the different timesteps as Atm — At and At = 2 Atm- This extrapolation as used in LN contrasts the modern impulse MTS methods which only add the contribution of the slow forces at the time of their evaluation. The impulse treatment makes the methods symplectic, but limits the outermost timestep due to resonance (see figures comparing LN to impulse-MTS behavior as the outer timestep is increased in [88]). In fact, the early versions of MTS methods for MD relied on extrapolation and were abandoned because of a notable energy drift. This drift is avoided by the phenomenological, stochastic terms in LN. [Pg.252]

Thus when an electric field is appHed to a soHd material the mobile charge carriers are accelerated to an average drift velocity v, which, under steady-state conditions, is proportional to the field strength. The proportionality factor is defined as the mobility, = v/E. An absolute mobility defined as the velocity pet unit driving force acting on the particle, is given as ... [Pg.350]

Higher moments can also be computed and used to define the skewness of the response peak. However, difficulties often arise in such computations as a result of drifting of the detection system. [Pg.1532]

The outer shell of the earth, consisting of the upper mantle and the crust (Figure I4. lO), is formed of a number of rigid plates. These plates are 20 in number and are shown in Figure 14.1 I. Of these, six or seven are major plates, as can be seen in the map. The edges of these plates define their boundaries and the arrows indicate the direction of their movement. These plates contain the continents, oceans and mountains. They almost float on the partially molten rock and metal of the mantle. The outer shell, known as the lithosphere, is about 70 to 1,50 km thick. It has already moved great distances below the etirth s surface, ever since the earth was formed and is believed to be in slow and continuous motion all the time. The plates slide on the molten mantle and move about lO to 100 mm a year in the direction shown by the arrows. The movement of plates is believed to be the cause of continental drifts, the formation of ocean basins and mountains and also the consequent earthquakes and volcanic eruptions. [Pg.437]

The existence of an azeotropic composition has some practical significance. By conducting a polymerization with the monomer feed ratio equal to the azeotropic composition, a high conversion batch copolymer can be prepared that has no compositional heterogeneity caused by drift in copolymer composition with conversion. Thus, the complex incremental addition protocols that arc otherwise required to achieve this end, are unnecessary. Composition equations and conditions for azeotropic compositions in ternary and quaternary eopolymerizations have also been defined.211,21... [Pg.341]

Tracer materials are defined as any product included in the test substance that can be recovered analytically for determining the drift from the application. This may be the active ingredient in an actual tank mix, or it may be a material added to the tank mix for subsequent detection. The selection of an appropriate tracer for assessing deposition rates in the field is critical to the success of a field study. Tracer materials such as low-level active ingredient products, colored dyes, fluorescent dyes, metallic salts, rare earth elements and radioactive isotopes have been used with varying degrees of success in the field. An appropriate tracer should have the following characteristics ... [Pg.976]

Control field matrices are usually placed at the field site upwind and at a significant distance from the spray or re-entry area so as to avoid all obvious routes of contamination at the test site that may destroy the integrity of the control samples. However, the control matrices should not be placed so far away from the test site as to avoid any suspected contamination that might occur from drift or other sources of contamination. One may want to define better the conditions at the test site in order to interpret better the exposure data collected from the volunteers matrices. [Pg.1010]

As evaporated water is pure, solids are left behind in the recirculating water, making it more concentrated than the makeup water. The blowdown purges the solids from the system. Note that the blowdown has the same chemical composition as the recirculated water. Cycles of concentration is a comparison of the dissolved solids in the blowdown compared with that in the makeup water. For example, at three cycles of concentration, the blowdown has three times the solids concentration as the makeup water. For calculation purposes, blowdown is defined to be all nonevaporative water losses (drift, leaks and intentional blowdown). In principle, any soluble component in the makeup and blowdown can be used to define the concentration for the cycles, for example, chloride and sulfate being soluble at high concentrations can be used. The cycles of concentration are thus defined to be ... [Pg.515]

In reality, the slip velocity may not be neglected (except perhaps in a microgravity environment). A drift flux model has therefore been introduced (Zuber and Findlay, 1965) which is an improvement of the homogeneous model. In the drift flux model for one-dimensional two-phase flow, equations of continuity, momentum, and energy are written for the mixture (in three equations). In addition, another continuity equation for one phase is also written, usually for the gas phase. To allow a slip velocity to take place between the two phases, a drift velocity, uGJ, or a diffusion velocity, uGM (gas velocity relative to the velocity of center of mass), is defined as... [Pg.199]

It is important in defining any analysis scheme that the analysis elements be consistent in scope, scale, and detail with each other and with the purposes of the analysis. Thus details of cohort exposure in microenvironments can provide valuable information on populations at risk if, in fact, pollutant concentrations are functions of micro-environments. It appears that micro-environments are clearly important in carbon monoxide (CO) exposure analysis because automobile generated CO concentrations are highly correlated with automobile usage patterns. It is not clear that ozone exposures are so correlated. Ozone commonly exists in "clouds" that are large compared to any one micro-environment, but drift over an area large compared to their size in the course of their formation and decay. [Pg.72]

We find that baseline drift is small if careful attention is paid to the chromatographic conditions. Under these circumstances we need only define the initial and final elution volumes to be included in the calculation of the molecular weight distribution. [Pg.135]

By virtue of the conditions xi+X2 = 1>Xi+X2 = 1, only one of two equations (Eq. 98) (e.g. the first one) is independent. Analytical integration of this equation results in explicit expression connecting monomer composition jc with conversion p. This expression in conjunction with formula (Eq. 99) describes the dependence of the instantaneous copolymer composition X on conversion. The analysis of the results achieved revealed [74] that the mode of the drift with conversion of compositions x and X differs from that occurring in the processes of homophase copolymerization. It was found that at any values of parameters p, p2 and initial monomer composition x° both vectors, x and X, will tend with the growth of p to common limit x = X. In traditional copolymerization, systems also exist in which the instantaneous composition of a copolymer coincides with that of the monomer mixture. Such a composition, x =X, is known as the azeotrop . Its values, controlled by parameters of the model, are defined for homophase (a) [1,86] and interphase (b) copolymerization as follows... [Pg.193]

When applied to the motion of ions in a crystal, the term drift applies to motion of ions under the influence of an electric field. Although movement of electrons in conduction bands determines conductivity in metals, in ionic compounds it is the motion of ions that determines the electrical condu-ctivity. There are no free or mobile electrons in ionic crystals. The mobility of an ion, ji, is defined as the velocity of the ion in an electric field of unit strength. Intuitively, it seems that the mobility of the ion in a crystal should be related to the diffusion coefficient. This is, in fact, the case, and the relationship is... [Pg.282]


See other pages where Drift defined is mentioned: [Pg.118]    [Pg.118]    [Pg.570]    [Pg.350]    [Pg.286]    [Pg.180]    [Pg.2576]    [Pg.13]    [Pg.90]    [Pg.432]    [Pg.1219]    [Pg.121]    [Pg.236]    [Pg.444]    [Pg.544]    [Pg.692]    [Pg.19]    [Pg.496]    [Pg.115]    [Pg.107]    [Pg.197]    [Pg.287]    [Pg.317]    [Pg.318]    [Pg.324]    [Pg.327]    [Pg.327]    [Pg.303]    [Pg.116]    [Pg.499]    [Pg.371]    [Pg.89]    [Pg.108]    [Pg.62]    [Pg.135]    [Pg.40]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Drift

Drifting

© 2024 chempedia.info