Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distribution function dynamic

Fig. 6.2 Radial distribution function determined from a lOOps molecular dynamics simulation of liquid argon at a temperature of 100K and a density of 1.396gcm. ... Fig. 6.2 Radial distribution function determined from a lOOps molecular dynamics simulation of liquid argon at a temperature of 100K and a density of 1.396gcm. ...
The potential of mean force is a useful analytical tool that results in an effective potential that reflects the average effect of all the other degrees of freedom on the dynamic variable of interest. Equation (2) indicates that given a potential function it is possible to calculate the probabihty for all states of the system (the Boltzmann relationship). The potential of mean force procedure works in the reverse direction. Given an observed distribution of values (from the trajectory), the corresponding effective potential function can be derived. The first step in this procedure is to organize the observed values of the dynamic variable, A, into a distribution function p(A). From this distribution the effective potential or potential of mean force, W(A), is calculated from the Boltzmann relation ... [Pg.55]

Discussion of the Equation.—The Boltzmann equation describes the manner in which the distribution function for a system of particles, /x = /(r,vx,f), varies in terms of its independent variables r, the position of observation vx, the velocity of the particles considered and the time, t. The variation of the distribution function due to the external forces acting on the particles and the action of collisions are both considered. In the integral expression on the right of Eq. (1-39), the Eqs. (1-21) are used to express the velocities after collision in terms of the velocities before collision the dynamics of the collision process are taken into account in the expression for x(6,e), from Eqs. (1-11) and (1-12), which enters into the k of Eqs. (1-21). Alternatively, as will be shown to be useful later, the velocities before and after collision may be expressed, by Eq. (1-20), in terms of G,g, and g the dynamics of the collision comes into the relation between g and g of Eq. (1-19). [Pg.16]

The Rouse model, as given by the system of Eq, (21), describes the dynamics of a connected body displaying local interactions. In the Zimm model, on the other hand, the interactions among the segments are delocalized due to the inclusion of long range hydrodynamic effects. For this reason, the solution of the system of coupled equations and its transformation into normal mode coordinates are much more laborious than with the Rouse model. In order to uncouple the system of matrix equations, Zimm replaced S2U by its average over the equilibrium distribution function ... [Pg.93]

Pulsed deuteron NMR is described, which has recently been developed to become a powerftd tool for studying molectdar order and dynamics in solid polymers. In drawn fibres the complete orientational distribution function for the polymer chains can be determined from the analysis of deuteron NMR line shapes. By analyzing the line shapes of 2H absorption spectra and spectra obtained via solid echo and spin alignment, respectively, both type and timescale of rotational motions can be determined over an extraordinary wide range of characteristic frequencies, approximately 10 MHz to 1 Hz. In addition, motional heterogeneities can be detected and the resulting distribution of correlation times can directly be determined. [Pg.23]

One may also show that MPC dynamics satisfies an H theorem and that any initial velocity distribution will relax to the Maxwell-Boltzmann distribution [11]. Figure 2 shows simulation results for the velocity distribution function that confirm this result. In the simulation, the particles were initially uniformly distributed in the volume and had the same speed v = 1 but different random directions. After a relatively short transient the distribution function adopts the Maxwell-Boltzmann form shown in the figure. [Pg.95]

The same problem can be considered in the opposite direction [34]. Knowing the K-value for a compound (e.g., oxalic acid dihydrate) under specified hydro-dynamic conditions and the fraction undissolved as a function of time, the moments of the distribution function of a dimension of significance can be obtained. [Pg.183]

When calculating free energies, one generates, either by molecular dynamics or MC, configuration space samples distributed according to a probability distribution function (e.g., the Boltzmann distribution in the case of the Helmholtz free energy). [Pg.279]

Thus the mass of stars and that of the whole system steadily increase while z soon approaches 1 and the stellar metallicity distribution is very narrow (see Fig. 8.24). The accretion rate is constant in time if the star formation rate is any fixed function of the mass of gas. Other models in which the accretion rate is constant, but less than in the extreme model, have been quite often considered in the older literature (e.g. Twarog 1980), but are less popular now because they are not well motivated from a dynamical point of view, there is an upper limit to the present inflow rate into the whole Galaxy of about 1 M0yr 1 from X-ray data (Cox Smith 1976) and they do not provide a very good fit to the observed metallicity distribution function. [Pg.277]

Abstract. The vast majority of the literature dealing with quantum dynamics is concerned with linear evolution of the wave function or the density matrix. A complete dynamical description requires a full understanding of the evolution of measured quantum systems, necessary to explain actual experimental results. The dynamics of such systems is intrinsically nonlinear even at the level of distribution functions, both classically as well as quantum mechanically. Aside from being physically more complete, this treatment reveals the existence of dynamical regimes, such as chaos, that have no counterpart in the linear case. Here, we present a short introductory review of some of these aspects, with a few illustrative results and examples. [Pg.52]

Newton, the limit h —> 0 is singular. The symmetries underlying quantum and classical dynamics - unitarity and symplecticity, respectively - are fundamentally incompatible with the opposing theory s notion of a physical state quantum-mechanically, a positive semi-definite density matrix classically, a positive phase-space distribution function. [Pg.53]

Suppose we are given an arbitrary system Hamiltonian H(x, p) in terms of the dynamical variables x and p we will be more specific regarding the precise meaning of x and p later. The Hamiltonian is the generator of time evolution for the physical system state, provided there is no coupling to an environment or measurement device. In the classical case, we specify the initial state by a positive phase space distribution function fci(x,p) in the quantum case, by the (position-representation) positive... [Pg.54]

Detailed modeling study of practical sprays has a fairly short history due to the complexity of the physical processes involved. As reviewed by O Rourke and Amsden, 3l() two primary approaches have been developed and applied to modeling of physical phenomena in sprays (a) spray equation approach and (b) stochastic particle approach. The first step toward modeling sprays was taken when a statistical formulation was proposed for spray analysis. 541 Even with this simplification, however, the mathematical problem was formidable and could be analyzed only when very restrictive assumptions were made. This is because the statistical formulation required the solution of the spray equation determining the evolution of the probability distribution function of droplet locations, sizes, velocities, and temperatures. The spray equation resembles the Boltzmann equation of gas dynamics[542] but has more independent variables and more complex terms on its right-hand side representing the effects of nucleations, collisions, and breakups of droplets. [Pg.325]

Two numerical methods have been used for the solution of the spray equation. In the first method, i.e., the full spray equation method 543 544 the full distribution function / is found approximately by subdividing the domain of coordinates accessible to the droplets, including their physical positions, velocities, sizes, and temperatures, into computational cells and keeping a value of / in each cell. The computational cells are fixed in time as in an Eulerian fluid dynamics calculation, and derivatives off are approximated by taking finite differences of the cell values. This approach suffersfrom two principal drawbacks (a) large numerical diffusion and dispersion... [Pg.325]


See other pages where Distribution function dynamic is mentioned: [Pg.82]    [Pg.82]    [Pg.3013]    [Pg.298]    [Pg.586]    [Pg.64]    [Pg.168]    [Pg.41]    [Pg.470]    [Pg.260]    [Pg.159]    [Pg.437]    [Pg.114]    [Pg.25]    [Pg.136]    [Pg.269]    [Pg.271]    [Pg.161]    [Pg.140]    [Pg.469]    [Pg.105]    [Pg.197]    [Pg.197]    [Pg.255]    [Pg.262]    [Pg.282]    [Pg.412]    [Pg.413]    [Pg.156]    [Pg.365]    [Pg.128]    [Pg.343]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Dynamic distribution

Radial distribution function, cluster dynamics

Trial distribution functions, dynamic

© 2024 chempedia.info