Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Eulerian fluid dynamics calculation

Two numerical methods have been used for the solution of the spray equation. In the first method, i.e., the full spray equation method 543 544 the full distribution function / is found approximately by subdividing the domain of coordinates accessible to the droplets, including their physical positions, velocities, sizes, and temperatures, into computational cells and keeping a value of / in each cell. The computational cells are fixed in time as in an Eulerian fluid dynamics calculation, and derivatives off are approximated by taking finite differences of the cell values. This approach suffersfrom two principal drawbacks (a) large numerical diffusion and dispersion... [Pg.325]

The Eulerian equations of motion are more useful for numerical solution of highly distorted fluid flow than are Lagrangian equations of motion. Multicomponent Eulerian calculations require equations of state for mixed cells and methods for moving mass and its associated state values into and out of mixed cells. These complications are avoided by Lagrangian calculations. Harlow s particle-in-cell (PIC) method uses particles for the mass movement. The first reactive Eulerian hydrodynamic code EIC (Explosive-in-cell) used the PIC method, and it is described in reference 2. The discrete nature of the mass movement introduced pressure and temperature variations from cycle to cycle of the calculation that were unacceptable for many reactive fluid dynamic problems. A one-component continuous mass transport Eulerian code developed in 1966 proved useful for solving many one-component problems of interest in reactive fluid dynamics. The need for a multicomponent Eulerian code resulted in a second 2DE code, described in reference 4. Elastic-plastic flow and real viscosity were added in 1976. The technique was extended to three dimensions in the 1970 s and the resulting 3DE code is described in Appendix D. [Pg.403]


See other pages where Eulerian fluid dynamics calculation is mentioned: [Pg.376]    [Pg.177]    [Pg.1281]    [Pg.344]    [Pg.207]    [Pg.2]    [Pg.249]    [Pg.249]    [Pg.108]    [Pg.108]    [Pg.1297]   
See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Dynamic calculations

Dynamical calculations

Eulerian

Fluid dynamics

© 2024 chempedia.info