Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Representation positional

Suppose we are given an arbitrary system Hamiltonian H(x, p) in terms of the dynamical variables x and p we will be more specific regarding the precise meaning of x and p later. The Hamiltonian is the generator of time evolution for the physical system state, provided there is no coupling to an environment or measurement device. In the classical case, we specify the initial state by a positive phase space distribution function fci(x,p) in the quantum case, by the (position-representation) positive... [Pg.54]

The so-called real-space methods provide a viable alternative to the supercell approach for molecules and clusters. Real-space methods use only the position-space representation (position space is also known as real space ), which implies that molecules and clusters can be dealt with directly, without artificial supercells. The Laplacian operator V, exactly evaluated in momentum space (see equation 97), has to be approximated in real-space methods. The most popular approaches " use a finite-difference approximation for the Laplacian. For example, the second derivative with respect to xofa function y, z) can be approximated by the following finite difference. [Pg.1511]

Quantum mechanics can also be developed so that the functions describing the system are functions of momentum coordinates, not position coordinates. This is termed a momentum representation, and in this representation, position and momentum operators take on a different form. The picture of a quantum system, though, is equivalent, and the choice between representations is largely one of convenience. [Pg.179]

Figure 4-4. Representation of vapor-liquid equilibria for a binary system showing moderate positive deviations from Raoult s law. Figure 4-4. Representation of vapor-liquid equilibria for a binary system showing moderate positive deviations from Raoult s law.
Figure 5 shows the isothermal data of Edwards (1962) for n-hexane and nitroethane. This system also exhibits positive deviations from Raoult s law however, these deviations are much larger than those shown in Figure 4. At 45°C the mixture shown in Figure 5 is only 15° above its critical solution temperature. Again, representation with the UNIQUAC equation is excellent. Figure 5 shows the isothermal data of Edwards (1962) for n-hexane and nitroethane. This system also exhibits positive deviations from Raoult s law however, these deviations are much larger than those shown in Figure 4. At 45°C the mixture shown in Figure 5 is only 15° above its critical solution temperature. Again, representation with the UNIQUAC equation is excellent.
Fig.5 Example of histogram presentatioa The lower picture is a schematic representation of the monitored component with Uie position of the transducers (1-4). The higher window is the total AE counts vs linear location representation of the located AE sources... Fig.5 Example of histogram presentatioa The lower picture is a schematic representation of the monitored component with Uie position of the transducers (1-4). The higher window is the total AE counts vs linear location representation of the located AE sources...
Secondly, y/mariefi) is analytic, that is the corresponding band pass filter has no negative frequencies. This feature is of great help because it avoids interference in the analysis between positive and negative frequencies of the signal, which alters the representation understandability. [Pg.362]

The exact position of reflectors within the weld volume is calculated by means of the known probe position plus weld geometry and transferred to a true-to-scale representation of the weld (top view and side view). Repeated scanning of the same zone only overwrites the stored indications in cases where they reach a higher echo amplitude. The scanning movement of the probe is recorded in the sketch at the top, however, only if the coupling is adequate and the probe is situated within the permissible rotation angle. [Pg.777]

The true-to-scale flaw position location and representation is made fully automatically in real time. [Pg.780]

The system uses a remote controlled manipulator system whieh scans the volume of interest. It also positions the x-ray source and x-ray camera at different angles relative the crack and create projection images of the craek. By using a tomographic reconstruction of these images a 3-D representation of the crack can be used for analysis and sizing. [Pg.1027]

Close inspection of equation (A 1.1.45) reveals that, under very special circumstances, the expectation value does not change with time for any system properties that correspond to fixed (static) operator representations. Specifically, if tlie spatial part of the time-dependent wavefiinction is the exact eigenfiinction ). of the Hamiltonian, then Cj(0) = 1 (the zero of time can be chosen arbitrarily) and all other (O) = 0. The second tenn clearly vanishes in these cases, which are known as stationary states. As the name implies, all observable properties of these states do not vary with time. In a stationary state, the energy of the system has a precise value (the corresponding eigenvalue of //) as do observables that are associated with operators that connmite with ft. For all other properties (such as the position and momentum). [Pg.14]

Figure Bl.24.2. A schematic representation of an elastic collision between a particle of massM and energy Eq and a target atom of mass M2. After the collision the projectile and target atoms have energies of and 2 respectively. The angles 0 and ( ) are positive as shown. All quantities refer to tire laboratory frame of reference. Figure Bl.24.2. A schematic representation of an elastic collision between a particle of massM and energy Eq and a target atom of mass M2. After the collision the projectile and target atoms have energies of and 2 respectively. The angles 0 and ( ) are positive as shown. All quantities refer to tire laboratory frame of reference.
This transfomi also solves the boundary value problem, i.e. there is no need to find, for an initial position x and final position a ", tlie trajectory that coimects the two points. Instead, one simply picks the initial momentum and positionp, x and calculates the classical trajectories resulting from them at all times. Such methods are generally referred to as initial variable representations (IVR). [Pg.2315]

Figure B3.6.2. Local mterface position in a binary polymer blend. After averaging the interfacial profile over small lateral patches, the interface can be described by a single-valued function u r. (Monge representation). Thennal fluctuations of the local interface position are clearly visible. From Wemer et al [49]. Figure B3.6.2. Local mterface position in a binary polymer blend. After averaging the interfacial profile over small lateral patches, the interface can be described by a single-valued function u r. (Monge representation). Thennal fluctuations of the local interface position are clearly visible. From Wemer et al [49].
One can regard the Hamiltonian (B3.6.26) above as a phenomenological expansion in temis of the two invariants Aiand//of the surface. To establish the coimection to the effective interface Hamiltonian (b3.6.16) it is instnictive to consider the limit of an almost flat interface. Then, the local interface position u can be expressed as a single-valued fiinction of the two lateral parameters n(r ). In this Monge representation the interface Hamiltonian can be written as... [Pg.2381]

The adjacency matrix of a molecule con.si.sting of n atom.s i.s a square (n / n) matrix. with the entric.s giving all the connectivities of the atoms. The intersection of a row and a column obtains a value of 1 if the corresponding atoms are connected. If there is no bond between the atoms being considered, the position in the matrix obtains the value 0. Thus, this matrix representation is a Boolean matrix with bits (0 or I) (Figure 2-13). [Pg.35]

A year later, a novel method of encoding chemical structures via typewriter input (punched paper tape) was described by Feldmann [42]. The constructed typewriter had a special character set and recorded on the paper tape the character struck and the position (coordinates) of the character on the page. These input data made it possible to produce tabular representations of the structure. [Pg.44]

The most well-known and at the same time the earliest computer model for a molecular structure representation is a wire frame model (Figure 2-123a). This model is also known under other names such as line model or Drciding model [199]. It shows the individual bonds and the angles formed between these bonds. The bonds of a molecule are represented by colored vector lines and the color is derived from the atom type definition. This simple method does not display atoms, but atom positions can be derived from the end and branching points of the wire frame model. In addition, the bond orders between two atoms can be expressed by the number of lines. [Pg.132]

Error . Writing the potential, V(x), in the momentum representation is not quite as straightforward. The relationship between position and momentum is realized in their... [Pg.82]

Scheme 1.1. Schematic representation of the Diels-Alder reaction. The versatility of the reaction is illustrated by the fact that heteroatoms are allowed at any of the positions a-f. Structures A and B indicate two regioisomeric products. Scheme 1.1. Schematic representation of the Diels-Alder reaction. The versatility of the reaction is illustrated by the fact that heteroatoms are allowed at any of the positions a-f. Structures A and B indicate two regioisomeric products.
In order to obtain this savings in the computational cost, orbitals are symmetry-adapted. As various positive and negative combinations of orbitals are used, there are a number of ways to break down the total wave function. These various orbital functions will obey different sets of symmetry constraints, such as having positive or negative values across a mirror plane of the molecule. These various symmetry sets are called irreducible representations. [Pg.125]

The above potential is referred to as a Lennard-Jones or 6-12 potential and is summed over all nonbonded pairs of atoms ij. The first positive term is the short range repulsion and the second negative term is the long range attraction. The parameters of the interaction are Aj and B... The convenient analytical form of the 6-12 potential means that it is often used, although an exponential repulsion term is usually considered to be a more accurate representation of the repulsive forces (as used in MM-t). [Pg.176]

Figure 2.7 shows a representation of this situation. The ordinate is an energy axis and the abscissa is called the reaction coordinate and represents the progress of the elementary step. In moving from P to H, the particle simply moves from one equilibrium position to another. In the absence of any external forces, the energy of both the initial and final locations should be the same as shown by the solid line in Fig. 2.7. Between the two minima corresponding to the initial and final positions is the energy barrier arising from the dislodging of the particles neighboring the reaction path from their positions of minimum energy. Figure 2.7 shows a representation of this situation. The ordinate is an energy axis and the abscissa is called the reaction coordinate and represents the progress of the elementary step. In moving from P to H, the particle simply moves from one equilibrium position to another. In the absence of any external forces, the energy of both the initial and final locations should be the same as shown by the solid line in Fig. 2.7. Between the two minima corresponding to the initial and final positions is the energy barrier arising from the dislodging of the particles neighboring the reaction path from their positions of minimum energy.
Fig. 5. A representation of ranitidine displaying four layers of the Connolly solvent-accessible dot surface normally color-coded in this process to correspond with the energies of electrostatic potential (color not shown here). Thus, the highest charge density would be indicated by red dots representing points where the attraction to an atom is strongest, and conversely, purple points would signify regions of maximal positive charge. Fig. 5. A representation of ranitidine displaying four layers of the Connolly solvent-accessible dot surface normally color-coded in this process to correspond with the energies of electrostatic potential (color not shown here). Thus, the highest charge density would be indicated by red dots representing points where the attraction to an atom is strongest, and conversely, purple points would signify regions of maximal positive charge.

See other pages where Representation positional is mentioned: [Pg.1036]    [Pg.1036]    [Pg.20]    [Pg.1030]    [Pg.152]    [Pg.1094]    [Pg.1135]    [Pg.124]    [Pg.126]    [Pg.142]    [Pg.191]    [Pg.16]    [Pg.70]    [Pg.85]    [Pg.91]    [Pg.133]    [Pg.661]    [Pg.733]    [Pg.217]    [Pg.229]    [Pg.30]    [Pg.31]    [Pg.152]    [Pg.342]    [Pg.159]    [Pg.161]    [Pg.236]   
See also in sourсe #XX -- [ Pg.73 , Pg.74 , Pg.148 , Pg.149 , Pg.211 ]




SEARCH



Position representation

Position representation

Position-space representation

Representation of relative positions

© 2024 chempedia.info