Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation structured

Example 3.1 Given the distillation structures in Figure 1.3a and b, perform a CS breakdown on each and count the total number of CSs used in each configuration. [Pg.50]

Examples of such complex distillation structures are thus columns that have more than one feed point and/or more than two product streams, like distributed material addition/removal columns, and thermally coupled columns. Obviously, as the complexity of the distillation structure increases, so does the design itself thereof. This chapter will, as an introduction to complex column design, treat the design of elementary complex columns such as distributed feed and sidestream withdrawal columns, and side rectifiers, and strippers, before discussing more intricate complex columns like fully thermally coupled columns (sometimes referred to as the Petlyuk and Kaibel columns) in the subsequent chapter. Despite... [Pg.157]

A. P. Gelhein, M. Buchholz, Process and Structure for Effecting Catalytic Reactions in Distillation Structure, US patent 5073236. [Pg.359]

The 3,4-diazidobenzylamine is a colorless, thermally labile liquid (explodes upon distillation). Structural evidence exists for one of the precursors, 3,4-diazidobenzyl bromide, and is shown in Figure 13.8. [Pg.401]

In principle, extractive distillation is more useful than azeotropic distillation because the process does not depend on the accident of azeotrope formation, and thus a greater choice of mass-separating agent is, in principle, possible. In general, the solvent should have a chemical structure similar to that of the less volatile of the two components. It will then tend to form a near-ideal mixture with the less volatile component and a nonideal mixture with the more volatile component. This has the effect of increasing the volatility of the more volatile component. [Pg.82]

Influence of the feed coke produced from distillation residue is less structured, less crystalline than that from a cracking residue. If the residue feeding the unit is highly contaminated with sulfur and metals, it is still coke, but is disqualified for certain applications. [Pg.292]

The sulfides are chemically neutral they can have a linear or ring structure. For molecules of equal carbon number, their boiling points are higher than those of mercaptans they constitute the majority of sulfur containing hydrocarbons in the middie distillates (kerosene and gas oil). [Pg.323]

It has a covalently bonded structure and is a colourless liquid at room temperature it is hydrolysed reversibly by water, all the germanium being recoverable by distilling the product with concentrated hydrochloric acid GeCl -P 2H2O — Ge02 -P 4HC1... [Pg.197]

The ester and catalj st are usually employed in equimoleciilar amounts. With R =CjHs (phenyl propionate), the products are o- and p-propiophenol with R = CH3 (phenyl acetate), o- and p-hydroxyacetophenone are formed. The nature of the product is influenced by the structure of the ester, by the temperature, the solvent and the amount of aluminium chloride used generally, low reaction temperatures favour the formation of p-hydroxy ketones. It is usually possible to separate the two hydroxy ketones by fractional distillation under diminished pressure through an efficient fractionating column or by steam distillation the ortho compounds, being chelated, are more volatile in steam It may be mentioned that Clemmensen reduction (compare Section IV,6) of the hj droxy ketones affords an excellent route to the substituted phenols. [Pg.664]

It may be pointed out that dehydration of p hydroxy esters with fused potassium hydrogen sulphate, acetic anhydride, phosphoric oxide or with tliionyl chloride in benzeue solution leads to ap unsiiturated esters containing some PY-unsaturated ester the proportion of the latter depends not only upon the structure of the ester but also upon the dehydrating agent used. Elehydration occasionally occurs during the reaction itself or upon attempted distillation. [Pg.874]

Hate 3. All glassware used for the work-up and distillation must be rinsed with a dilute solution of triethylamine in diethyl ether or acetone in order to be sure that traces of acids on the glass walls have been neutralized. Allenic sulfides with the structure C=C=C(SR)-CH- isomerize under the influence of acids to give conjugated dienes, C=C-C(SR)=C. [Pg.47]

When benzene is prepared from coal tar it is contaminated thiophene from which it cannot be separated by distillation because of very similar boiling points Shaking a mixture of benzene and thiophene with sulfuric acid causes sulfonation of the thiophene ring but leaves benzene untouched The sulfonation product of thiophene dissolves m the sulfuric acid layer from which the benzene layer is separated the benzene layer is then washed with water and distilled Give the structure of the sulfonation product of thiophene... [Pg.508]

Much work has been done on the structure of the metal alkoxides (49). The simple alkaU alkoxides have an ionic lattice and a layer stmcture, but alkaline earth alkoxides show more covalent character. The aluminum alkoxides have been thoroughly studied and there is no doubt as to their covalent nature the lower alkoxides are associated, even in solution and in the vapor phase. The degree of association depends on the bulkiness of the alkoxy group and can range from 2 to 4, eg, the freshly distilled isopropylate is trimeric (4) ... [Pg.23]

Exploitation of Homogeneous Azeotropes Homogeneous azeotropic distillation refers to a flowsheet structure in which azeotrope formation is exploited or avoided in order to accomplish the desired separation in one or more distillation columns. The azeotropes in the system either do not exhibit two-hquid-phase behavior or the hquid-phase behavior is not or cannot be exploited in the separation sequence. The structure of a particular sequence will depend on the geometry of the residue curve map or distillation region diagram for the feed mixture-entrainer system. Two approaches are possible ... [Pg.1307]

Present-day nomenclature is partly the result of the conflict and interplay of two functions the need to communicate in speech and on the printed page on the one hand, and the need for archival storage of information and its efficient, reliable retrieval. The former function came first, and laid the basis for the nomenclature most commonly used even today, and gave birth to a wealth of trivial names (i.e. names that give little or no information on structure). These were often coined on the basis of the origin of the substance, as in the case of collidine, obtained from distillation of bones in glue factories, or were derived from a special characteristic, as in the case of skatole, which has a fecal odor. Such names are short and generally euphonious, but they must be memorized they cannot be deduced from the structure. [Pg.8]

Once packing heights are determined in other sections from HETP (distillation) or Koa (absorption), the height allowances for the internals (from Figure 1) can be added to determine the overall column height. Column diameter is determined in sections on capacity and pressure drop for the selected packing (random dumped or structured). [Pg.76]

Figure 23. Choosing between structured packing or high performance trays for distillation retrofits. (Reproduced with permission of the American Institute of Chemical Engineers. Copyright 1997 AlChE. All rights reserved.)... Figure 23. Choosing between structured packing or high performance trays for distillation retrofits. (Reproduced with permission of the American Institute of Chemical Engineers. Copyright 1997 AlChE. All rights reserved.)...
Camphor was originally obtained from the camphor tree Lauras eamphora in which it appeared in the optically active dextro-rotary form. Since about 1920 the racemic ( ) mixture derived from oil of turpentine has been more generally used. By fractional distillation of oil of turpentine the product pinene is obtained. By treating this with hydrochloric acid, pinene hydrochloride (also known as bomyl chloride) may be produced. This is then boiled with acetic acid to hydrolyse the material to the racemic bomeol, which on oxidation yields camphor. Camphor is a white crystalline solid (m.p. 175°C) with the structure shown in Figure 22.3. [Pg.618]

Rosin and tall oil-based tackifiers are derived from feedstock, which is typically obtained by extraction and distillation of the materials from shredded tree stumps or wood chips. A typical structure of one of the different products obtained through this process is this abietic acid structure shown in Fig. 14 as a representative of the rosin acid family. [Pg.503]


See other pages where Distillation structured is mentioned: [Pg.285]    [Pg.2]    [Pg.3]    [Pg.49]    [Pg.154]    [Pg.296]    [Pg.328]    [Pg.365]    [Pg.359]    [Pg.359]    [Pg.57]    [Pg.285]    [Pg.2]    [Pg.3]    [Pg.49]    [Pg.154]    [Pg.296]    [Pg.328]    [Pg.365]    [Pg.359]    [Pg.359]    [Pg.57]    [Pg.252]    [Pg.208]    [Pg.178]    [Pg.277]    [Pg.33]    [Pg.34]    [Pg.335]    [Pg.547]    [Pg.606]    [Pg.1314]    [Pg.1322]    [Pg.1346]    [Pg.1396]    [Pg.1399]    [Pg.1404]    [Pg.211]    [Pg.76]    [Pg.364]    [Pg.609]    [Pg.610]   
See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Distillation columns structure

Distillation columns structured packing

Distillation subregions structures

Spatial and Control Structure Design in Reactive Distillation

Structured packing vacuum distillation

© 2024 chempedia.info