Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersion systems phase

Another type of polyol often used in the manufacture of flexible polyurethane foams contains a dispersed soHd phase of organic chemical particles (234—236). The continuous phase is one of the polyols described above for either slab or molded foam as required. The dispersed phase reacts in the polyol using an addition reaction with styrene and acrylonitrile monomers in one type or a coupling reaction with an amine such as hydrazine and isocyanate in another. The soHds content ranges from about 21% with either system to nearly 40% in the styrene—acrylonitrile system. The dispersed soHds confer increased load bearing and in the case of flexible molded foams also act as a ceU opener. [Pg.417]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

A gas-sohds contacting operation in which the sohds phase exists in a dilute condition is termed a dispersion system. It is often called a pneumatic system because, in most cases, the quantity and velocity of the gas are sufficient to lift and convey the sohds against the force of gravity. Pneumatic systems may be distinguished by two characteristics ... [Pg.1225]

FIG. 22-37 Regimes of separation in a liqiiid-solid-liqiiid system. Phase 1 particle phase 2 = hqiiid (dispersed) phase 3 = liquid (continuous). [Pg.2015]

The blends of thermotropic LCPs and thermoplastics are generally two-phase systems where the dispersed LCP phase exists as small spheres or fibers within the thermoplastic matrix. Often a skin/core morphology is created with well-fibrillated and oriented LCP phases in the skin region and less-oriented or spherical LCP domains in the core. [Pg.623]

It follows from general considerations that the role of the shape of the filler particles during net-formation must be very significant. Thus, it is well-known that the transition from spherical particles to rod-like ones in homogeneous systems results in such radical structural effect as the formation of liquid-crystal phase. Something like that must be observed in disperse systems. [Pg.81]

A classification of dispersed systems on this basis has been worked out by Pawlow (30) (1910), who introduces a new variable called the concentration of the dispersed phase, i.e., the ratio of the masses of the two constituents of an emulsion, etc. When the dispersed phase is finely divided the thermodynamic potential is a homogeneous function of zero degree in respect of this concentration. [Pg.446]

Mass transfer across the liquid-solid interface in mechanically agitated liquids containing suspended solid particles has been the subject of much research, and the data obtained for these systems are probably to some extent applicable to systems containing, in addition, a dispersed gas phase. Liquid-solid mass transfer in such systems has apparently not been studied separately. Recently published studies include papers by Calderbank and Jones (C3), Barker and Treybal (B5), Harriott (H4), and Marangozis and Johnson (M3, M4). Satterfield and Sherwood (S2) have reviewed this subject with specific reference to applications in slurry-reactor analysis and design. [Pg.122]

This result can be useful for design purposes when the diffusivities, partition coefficients, feed-stream conditions, dispersed-system volume, gas-phase holdup (or average residence time), and the size distribution are known. When the size distribution is not known, but the Sauter-mean radius of the population is known, (293) can be approximated by... [Pg.385]

Equations (299) and (300) depict the input-output relationships for the concentrations and the temperature in each phase for a given continuous steady-flow dispersed system. Therefore, (299) and (300) can be used in predicting the input-output relationships for a multistage multicomponent gas-liquid system with several continuous stirred vessels in series. [Pg.386]

General equations of momentum and energy balance for dispersed two-phase flow were derived by Van Deemter and Van Der Laan (V2) by integration over a volume containing a large number of elements of the dispersed phase. A complete system of solutions of linearized Navier-Stokes equations... [Pg.386]

By maintaining the first-stage reactor just beyond the phase inversion point, the dispersed rubber phase is relatively rich in dissolved styrene. As polymerization subsequently proceeds in the LFR s, the dissolved styrene will react to form either a graft copolymer with the rubber or a homopolymer. The latter will remain within the rubber droplet as a separate occluded phase. Achieving the first-stage reactor conversion and temperature by recycling a portion of the hot second reactor effluent may permit simplification of the first reactor temperature control system. [Pg.106]

An Eulerian-Eulerian (EE) approach was adopted to simulate the dispersed gas-liquid flow. The EE approach treats both the primary liquid phase and the dispersed gas phase as interpenetrating continua, and solves a set of Navier-Stokes equations for each phase. Velocity inlet and outlet boundary conditions were employed in the liquid phase, whilst the gas phase conditions consisted of a velocity inlet and pressure outlet. Turbulence within the system was account for with the Standard k-e model, implemented on a per-phase basis, similar to the recent work of Bertola et. al.[4]. A more detailed description of the computational setup of the EE method can be found in Pareek et. al.[5]. [Pg.670]

P 46] Prior to the liquid/liquid micro reaction system used, a microgrid serves for dispersing the phases [117]. No other details on performing the reaction are given. [Pg.509]

The advantage of the two-phase micro flow contacting concept is easy phase separation, as the phases are never inter-mixed. However, in view of the normally facile separation of gases and liquids, this is not of major impact. A real large benefit stems from operating with gas and liquid layers of defined geometry with a knovm, defined interface, unlike most disperse systems having a size distribution of their bubbles in the continuous liquid. [Pg.577]

In terms of the two-phase system which comprises dispersions of solids in liquids, the minimum energy requirement is met if the total interfacial energy of the system has been minimized. If this requirement has been met, chemically, the fine state of subdivision is the most stable state, and the dispersion will thus avoid changing physically with time, except for the tendency to settle manifest by all dispersions whose phases have different densities. A suspension can be stable and yet undergo sedimentation, if a true equilibrium exists at the solid-liquid interface. If sedimentation were to be cited as evidence of instability, no dispersion would fit the requirements except by accident—e.g., if densities of the phases were identical, or if the dispersed particles were sufficiently small to be buoyed up by Brownian movement. [Pg.93]

Stopped flow mixing of organic and aqueous phases is an excellent way to produce dispersion within a few milliseconds. The specific interfacial area of the dispersion can become as high as 700 cm and the interfacial reaction in the dispersed system can be measured by a photodiode array spectrophotometer. A drawback of this method is the limitation of a measurable time, although it depends on the viscosity. After 200 ms, the dispersion system starts to separate, even in a rather viscous solvent like a dodecane. Therefore, rather fast interfacial reactions such as diffusion-rate-limiting reactions are preferable systems to be measured. [Pg.362]

FIG. 1 Schematic drawing of the high-speed stirring (HSS) apparatus. An organic phase separated from the dispersed system by the teflon phase separator is continuously circulated through the photodiode array detector. [Pg.363]

A typical example is the protonation of tetraphenylporphirin (TPP) at the dodecane-acid solution interface. The interfacial protonation rate was measured by a two-phase stop flow method [6] and a CLM method [9]. In the former method, the stagnant layer of 1.4 jxm still existed under the highly dispersed system. In the CLM method, the liquid membrane phase of 50-100 /am thickness behaved as a stagnant layer where the TPP molecule has to migrate according to its self-diffusion rate. [Pg.377]

A disperse system is defined as a heterogenous, two-phase system in which the internal (dispersed, discontinuous) phase is distributed or dispersed within the continuous (external) phase or vehicle. Various pharmaceutical systems are included in this definition, the internal and external phases being gases, liquids, or solids. Disperse systems are also important in other fields of application, e.g., processing and manufacturing of household and industrial products such as cosmetics, foods, and paints. [Pg.242]

Disperse systems can be classified in various ways. Classification based on the physical state of the two constituent phases is presented in Table 1. The dispersed phase and the dispersion medium can be either solids, liquids, or gases. Pharmaceutically most important are suspensions, emulsions, and aerosols. (Suspensions and emulsions are described in detail in Secs. IV and V pharmaceutical aerosols are treated in Chapter 14.) A suspension is a solid/liquid dispersion, e.g., a solid drug that is dispersed within a liquid that is a poor solvent for the drug. An emulsion is a li-quid/liquid dispersion in which the two phases are either completely immiscible or saturated with each other. In the case of aerosols, either a liquid (e.g., drug solution) or a solid (e.g., fine drug particles) is dispersed within a gaseous phase. There is no disperse system in which both phases are gases. [Pg.242]

Table 1 Classification Scheme of Disperse Systems on the Basis of the Physical State of the Dispersed Phase and the Dispersion Medium... [Pg.243]

The number of the constituent phases of a disperse system can be higher than two. Many commercial multiphase pharmaceutical products cannot be categorized easily and should be classified as complex disperse systems. Examples include various types of multiple emulsions and suspensions in which solid particles are dispersed within an emulsion base. These complexities influence the physicochemical properties of the system, which, in turn, determine the overall characteristics of the dosage forms with which the formulators are concerned. [Pg.244]

Disperse systems can also be classified on the basis of their aggregation behavior as molecular or micellar (association) systems. Molecular dispersions are composed of single macromolecules distributed uniformly within the medium, e.g., protein and polymer solutions. In micellar systems, the units of the dispersed phase consist of several molecules, which arrange themselves to form aggregates, such as surfactant micelles in aqueous solutions. [Pg.244]

One of the most obvious properties of a disperse system is the vast interfacial area that exists between the dispersed phase and the dispersion medium [48-50]. When considering the surface and interfacial properties of the dispersed particles, two factors must be taken into account the first relates to an increase in the surface free energy as the particle size is reduced and the specific surface increased the second deals with the presence of an electrical charge on the particle surface. This section covers the basic theoretical concepts related to interfacial phenomena and the characteristics of colloids that are fundamental to an understanding of the behavior of any disperse systems having larger dispersed phases. [Pg.247]


See other pages where Dispersion systems phase is mentioned: [Pg.156]    [Pg.410]    [Pg.500]    [Pg.76]    [Pg.268]    [Pg.475]    [Pg.463]    [Pg.599]    [Pg.210]    [Pg.591]    [Pg.446]    [Pg.380]    [Pg.387]    [Pg.116]    [Pg.204]    [Pg.236]    [Pg.374]    [Pg.483]    [Pg.288]    [Pg.418]    [Pg.434]    [Pg.245]    [Pg.245]    [Pg.246]   
See also in sourсe #XX -- [ Pg.4117 ]




SEARCH



Disperse phase

Disperse systems

Dispersed phase systems

Dispersed phase systems

Dispersed systems

Dispersed systems, dispersions

Dispersive phase

Dispersive systems

Phase dispersion

© 2024 chempedia.info