Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersion Free radical

Transition metal catalyzed, ring opening polymerization Dispersion, cationic polymerization Homogeneous/precipitation, cationic polymerization Homogeneous, free radical/cationic polymerization Precipitation, free radical polymerization Dispersion, free radical polymerization Norbornene polymer, polycarbonate Isobutylene polymer Vinyl ether polymer Amorphous fluoropolymers Vinyl polymer, semicrystalline fluoropolymers Polyvinyl acetate and ethylene vinyl acetate copol5Tner... [Pg.2922]

Dispersion, free radical polymerization Polyvinyl acetate and ethylene vinyl acetate copolymer... [Pg.1451]

Acrylonitrile and its comonomers can be polymerized by any of the weU-known free-radical methods. Bulk polymerization is the most fundamental of these, but its commercial use is limited by its autocatalytic nature. Aqueous dispersion polymerization is the most common commercial method, whereas solution polymerization is used ia cases where the spinning dope can be prepared directly from the polymerization reaction product. Emulsion polymerization is used primarily for modacryhc compositions where a high level of a water-iasoluble monomer is used or where the monomer mixture is relatively slow reacting. [Pg.277]

Ethylene and tetrafluoroethylene are copolymerized in aqueous, nonaqueous, or mixed medium with free-radical initiators. The polymer is isolated and converted into extmded cubes, powders, and beads, or a dispersion. This family of products is manufactured by Du Pont, Hoechst, Daikin, Asahi Glass, and Ausimont and sold under the trade names of Tefzel, Hostaflon ET, Neoflon EP, Aflon COP, and Halon ET, respectively. [Pg.365]

Tetrafluoroethylene of purity suitable for granular or dispersion polymerizations is acceptable for copolymerization with ethylene. Polymerization-grade ethylene is suitable for copolymerization with tetrafluoroethylene. Modifying termonomers, eg, perfluorobutylethylene and perfluoropropylene, are incorporated by free-radical polymerization. [Pg.365]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Figure 4c illustrates interfacial polymerisation encapsulation processes in which the reactant(s) that polymerise to form the capsule shell is transported exclusively from the continuous phase of the system to the dispersed phase—continuous phase interface where polymerisation occurs and a capsule shell is produced. This type of encapsulation process has been carried out at Hquid—Hquid and soHd—Hquid interfaces. An example of the Hquid—Hquid case is the spontaneous polymerisation reaction of cyanoacrylate monomers at the water—solvent interface formed by dispersing water in a continuous solvent phase (14). The poly(alkyl cyanoacrylate) produced by this spontaneous reaction encapsulates the dispersed water droplets. An example of the soHd—Hquid process is where a core material is dispersed in aqueous media that contains a water-immiscible surfactant along with a controUed amount of surfactant. A water-immiscible monomer that polymerises by free-radical polymerisation is added to the system and free-radical polymerisation localised at the core material—aqueous phase interface is initiated thereby generating a capsule sheU (15). [Pg.320]

Chemically the Hquid NaK alloy, usually used as a dispersion and on an inert support, provides more reactive surface area than either potassium or sodium metal alone, thus enhancing the reducing reactivity and permitting reactions to proceed atlower (eg, —12°C) temperatures. NaK alloys are suitable for chemical reactions involving unstable intermediates such as carbanions and free radicals. [Pg.519]

In the manufacture of highly resident flexible foams and thermoset RIM elastomers, graft or polymer polyols are used. Graft polyols are dispersions of free-radical-polymerized mixtures of acrylonitrile and styrene partially grafted to a polyol. Polymer polyols are available from BASF, Dow, and Union Carbide. In situ polyaddition reaction of isocyanates with amines in a polyol substrate produces PHD (polyhamstoff dispersion) polyols, which are marketed by Bayer (21). In addition, blending of polyether polyols with diethanolamine, followed by reaction with TDI, also affords a urethane/urea dispersion. The polymer or PHD-type polyols increase the load bearing properties and stiffness of flexible foams. Interreactive dispersion polyols are also used in RIM appHcations where elastomers of high modulus, low thermal coefficient of expansion, and improved paintabiUty are needed. [Pg.347]

The most commonly used combination of chemicals to produce a polyacrylamide gel is acrylamide, bis acrylamide, buffer, ammonium persulfate, and tetramethylenediarnine (TEMED). TEMED and ammonium persulfate are catalysts to the polymerization reaction. The TEMED causes the persulfate to produce free radicals, causing polymerization. Because this is a free-radical driven reaction, the mixture of reagents must be degassed before it is used. The mixture polymerizes quickly after TEMED addition, so it should be poured into the gel-casting apparatus as quickly as possible. Once the gel is poured into a prepared form, a comb can be appHed to the top portion of the gel before polymerization occurs. This comb sets small indentations permanently into the top portion of the gel which can be used to load samples. If the comb is used, samples are then typically mixed with a heavier solution, such as glycerol, before the sample is appHed to the gel, to prevent the sample from dispersing into the reservoir buffer. [Pg.182]

A waterborne system for container coatings was developed based on a graft copolymerization of an advanced epoxy resin and an acryHc (52). The acryhc-vinyl monomers are grafted onto preformed epoxy resins in the presence of a free-radical initiator grafting occurs mainly at the methylene group of the aHphatic backbone on the epoxy resin. The polymeric product is a mixture of methacrylic acid—styrene copolymer, soHd epoxy resin, and graft copolymer of the unsaturated monomers onto the epoxy resin backbone. It is dispersible in water upon neutralization with an amine before cure with an amino—formaldehyde resin. [Pg.370]

A mass of polymer will contain a large number of individual molecules which will vary in their molecular size. This will occur in the case, for example, of free-radically polymerised polymers because of the somewhat random occurrence of ehain termination reactions and in the case of condensation polymers because of the random nature of the chain growth. There will thus be a distribution of molecular weights the system is said to be poly disperse. [Pg.40]

Because most widely used methods used to prepare classical styrene/divinylben-zene copolymers have always been based on suspension polymerization, it seemed logical that a series of porous PDVB gels using similar methodologies could be developed. In suspension polymerization, divinylbenzene is suspended as a dispersion of small droplets in a continuous phase of water and polymerized by classical free radical initiation. This process produces the spherical beads... [Pg.368]

Presented in this paper is a specific example of a semi-batch, free radical, dispersion polymerization. In this example, SimuSolv is used to quantify a Icinetic model derived from free radical polymerization principles and then used to define a new finishing process to reduce residual monomer to an acceptable level. Finally, experimental results are compared with those predicted by the computer simulation. [Pg.307]

The peroxide-initiated, free radical, dispersion polymerization of the single monomer is assumed to progress according to the simultaneous reactions of initiator decomposition, initiation, propagation and termination with appropriate reaction orders described elsewhere.(2-6)... [Pg.307]

Alternating 1 1 copolymers of sodium methallylsulfonate and maleic anhydride are useful as water-soluble dispersants [738]. The copolymers are produced by free radical polymerization in acetic acid solution. Because of... [Pg.312]

Free-radical polymerization of alkenes has been carried out in aqueous conditions.115 Aqueous emulsion and suspension polymerization is carried out today on a large scale by free-radical routes. Polymer latexes can be obtained as products (i.e., stable aqueous dispersions... [Pg.66]

In the specific case of silica nanoparticles-pH EMA hybrid materials, the synthesis relies on obtaining a fine dispersion of silica nanoparticles (with a mean diameter of 7nm) in HEMA monomers (liquid phase). When a homogeneous solution is obtained, a free radical initiator is added at a concentration based on the weight of the monomer mixture. After the initiator dissolution, the solution can be poured into molds or between two glass plates to obtain monoliths or uniform films, respectively, after being cured at temperatures around 60-85 °C for several hours. [Pg.378]


See other pages where Dispersion Free radical is mentioned: [Pg.318]    [Pg.278]    [Pg.282]    [Pg.385]    [Pg.274]    [Pg.439]    [Pg.252]    [Pg.495]    [Pg.339]    [Pg.185]    [Pg.411]    [Pg.590]    [Pg.239]    [Pg.201]    [Pg.323]    [Pg.106]    [Pg.502]    [Pg.306]    [Pg.318]    [Pg.279]    [Pg.141]    [Pg.51]    [Pg.94]    [Pg.95]    [Pg.192]    [Pg.34]    [Pg.192]   
See also in sourсe #XX -- [ Pg.71 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 , Pg.82 , Pg.83 , Pg.84 , Pg.85 ]




SEARCH



Free radical polymerization dispersity

Free-radical dispersion polymerization

Free-radical dispersion polymerization constant

Free-radical dispersion polymerization initiation

Free-radical dispersion polymerization initiator decomposition

© 2024 chempedia.info