Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers free-radical polymerisation

Degradation of Polymers Free-radical Polymerisation Non-radical Polymerisation... [Pg.407]

Volume 14 Volume 14A Volume 15 Section 5. POLYMERISATION REACTIONS (3 Volumes) Degradation of Polymers Free-radical Polymerisation Non-radical Polymerisation... [Pg.722]

One of the issues that concern liquid feedstock cracking operations is a higher rate of fouling. This is not only a consequence of heavier coke forming precursors, but also as a consequence of long lived free radicals which act as agents for the formation of a polymer (often referred to as pop-corn polymer) in the primary fractionator and downstream units. For instance, free radicals based on styrene or indene have sufficiently long half-lives to pass from the pyrolysis section into the primary fractionator. These can concentrate in this unit and produce polymer (free radical polymerisation) when sufficient amounts of suitable olefins are present, in particular styrene itself and di-olefins such as cyclo-pentadiene or butadiene. [Pg.160]

Eree-radical initiation of emulsion copolymers produces a random polymerisation in which the trans/cis ratio caimot be controlled. The nature of ESBR free-radical polymerisation results in the polymer being heterogeneous, with a broad molecular weight distribution and random copolymer composition. The microstmcture is not amenable to manipulation, although the temperature of the polymerisation affects the ratio of trans to cis somewhat. [Pg.495]

A further feature of anionic polymerisation is that, under very carefully controlled eonditions, it may be possible to produee a polymer sample which is virtually monodisperse, i.e. the molecules are all of the same size. This is in contrast to free-radical polymerisations which, because of the randomness of both chain initiation and termination, yield polymers with a wide molecular size distribution, i.e. they are said to be polydisperse. In order to produce monodisperse polymers it is necessary that the following requirements be met ... [Pg.36]

A mass of polymer will contain a large number of individual molecules which will vary in their molecular size. This will occur in the case, for example, of free-radically polymerised polymers because of the somewhat random occurrence of ehain termination reactions and in the case of condensation polymers because of the random nature of the chain growth. There will thus be a distribution of molecular weights the system is said to be poly disperse. [Pg.40]

Commercial poly(methyl methacrylate) is a transparent material, and microscopic and X-ray analyses generally indicate that the material is amorphous. For this reason the polymer was for many years considered to be what is now known as atactic in structure. It is now, however, known that the commercial material is more syndiotactic than atactic. (On one scale of assessment it might be considered about 54% syndiotactic, 37% atactic and 9% isotactic. Reduction in the temperature of free-radical polymerisation down to -78°C increases the amount of syndiotacticity to about 78%). [Pg.405]

Polystyrene produced by free-radical polymerisation techniques is part syndio-tactic and part atactic in structure and therefore amorphous. In 1955 Natta and his co-workers reported the preparation of substantially isotactic polystyrene using aluminium alkyl-titanium halide catalyst complexes. Similar systems were also patented by Ziegler at about the same time. The use of n-butyl-lithium as a catalyst has been described. Whereas at room temperature atactic polymers are produced, polymerisation at -30°C leads to isotactic polymer, with a narrow molecular weight distribution. [Pg.454]

Mention may finally be made of graft polymers derived from natural rubber which have been the subject of intensive investigation but which have not achieved commercial significance. It has been found that natural rubber is an efficient chain transfer agent for free-radical polymerisation and that grafting appears to occur by the mechanism shown in Figure 30.8. [Pg.865]

The linkage between two chains can also be ionic. Thus the copolymer between ethylene and methacrylic acid (MA) (up to 15% MA), made by free radical polymerisation, yields a polymer with pendant carboxyl groups. Neutralisation with zinc ions gives a crosslinked, thermo-reversible polymer (Surlyn ). The resulting polymer (ionomer) has limited properties, although it is the favoured material for the outer covering of golf balls. [Pg.76]

This section focuses on describing on how end group structures can be determined from one particular polymer that was generated by free radical polymerisation (see Figure 1), namely poly(methyl methacrylate) (PMMA, 1). [Pg.175]

A review of the application of ESR to the study of free radical polymerisation is given by Yamada and co-workers [146]. A survey of the application ESR spectroscopy spin label/probe methods in heterogeneous polymer systems is provided by Veksli and co-workers [147]. Spin probe methods allow the study of the MD of the polymer, its free volume, phase separation and phase morphology. [Pg.728]

These reactions commonly take place in free radical polymerisation. In these reactions, a growing polymer radical... [Pg.32]

As polystyrene obtained by free radical polymerisation technique is atactic it is therefore non-crystalline. The isotactic polystyrene is obtained by the use of Ziegler-Natta catalysts and n-butyl lithium. Isotactic polystyrene is having a high crystalline Melting point of 250°C. It is transparent. It is more brittle than the atactic polymer. [Pg.157]

Free radical polymerisation is largely atactic while polymerisation with Ziegler-Natta catalysts can result in isotactic or syndiotactic polymers. [Pg.259]

Free radical polymerisation yields a polymer with 15-20 per cent 1, 2 structure. Lower temperature polymerisation favours formation of 1, 4-trans units in the polymer. [Pg.259]

These polymers are synthesised in water by free radical polymerisation. In the reaction, many components are involved, principally ... [Pg.39]

Later, other authors utilized the differences found in the optical activity of monomer and polymer to carry out kinetic investigations on the free-radical polymerisation (70,72,120) and copolymerization (71), and tried to achieve the steric control of the propagation step of free-radical polymerization and copolymerization (13, 14, 39, 73, 98) using optically active monomers and initiators. [Pg.394]


See other pages where Polymers free-radical polymerisation is mentioned: [Pg.518]    [Pg.36]    [Pg.319]    [Pg.359]    [Pg.384]    [Pg.175]    [Pg.182]    [Pg.34]    [Pg.144]    [Pg.104]    [Pg.313]    [Pg.19]   
See also in sourсe #XX -- [ Pg.183 , Pg.184 ]

See also in sourсe #XX -- [ Pg.274 , Pg.277 ]




SEARCH



Free polymer

Polymer Polymerisable

Polymer Polymerisation

Polymer Polymerise

Polymer Polymerised

Polymer free radical

Polymer radicals

Polymerisation free radical

Polymerisation radical

© 2024 chempedia.info