Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersed phase behavior

Dispersed phase behavior like continuous phase. [Pg.188]

Figure 16.1 Relationship between molecular shape, aggregate structure in dilute dispersions, phase behavior and packing parameter. Micellar phase (L,), cubic micellar phase (I), hexagonal phase (H), bicontinuous cubic phase (Q), La lamellar phase. Subscripts I and II indicate normal and inverted phases, respectively. From M. Scarzello, Aggregation Properties of Amphiphilic DNA-Carriers for Cene Delivery, Ph. D. Thesis University of Groningen, p 6, 2006... Figure 16.1 Relationship between molecular shape, aggregate structure in dilute dispersions, phase behavior and packing parameter. Micellar phase (L,), cubic micellar phase (I), hexagonal phase (H), bicontinuous cubic phase (Q), La lamellar phase. Subscripts I and II indicate normal and inverted phases, respectively. From M. Scarzello, Aggregation Properties of Amphiphilic DNA-Carriers for Cene Delivery, Ph. D. Thesis University of Groningen, p 6, 2006...
The multi-fluid models discussed in Chap. 3 have been employed extensively describing the behavior of cold flow and reactive flow systems in multiphase reactors. However, for gas-solid fluidized bed systems, and in particular for dense systems, it has been found that the dispersed phase behavior cannot be captured without an extended description of the pressure tensor closure. The first extensions of the dilute continuum mechanical two-fluid model concept included a very rough approximation of the solid phase collisional pressure in terms of a semi-empirical correlation for the modulus of elasticity and a constant representative particle fluid viscosity. This type... [Pg.583]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

In a somewhat wider sense, one can define amphiphiles as molecules in which chemically very different units are linked together. For example, the structures formed by A B block copolymers in demixed A and/or B homopolymer melts and their phase behavior are very similar to those of classical amphiphiles in water and/or oil [13,14]. Copolymers are used not only to disperse immiscible homopolymer phases in one another, but also to create new, mesoscopically structured materials with unusual and interesting properties [15]. [Pg.635]

To understand how the dispersed phase is deformed and how morphology is developed in a two-phase system, it is necessary to refer to studies performed specifically on the behavior of a dispersed phase in a liquid medium (the size of the dispersed phase, deformation rate, the viscosities of the matrix and dispersed phase, and their ratio). Many studies have been performed on both Newtonian and non-Newtonian droplet/medium systems [17-20]. These studies have shown that deformation and breakup of the droplet are functions of the viscosity ratio between the dispersity phase and the liquid medium, and the capillary number, which is defined as the ratio of the viscous stress in the fluid, tending to deform the droplet, to the interfacial stress between the phases, tending to prevent deformation ... [Pg.586]

Flow behavior of the polymer blends is determined by their structure, which is governed by the degree of dispersion of the component and by the mode of their distribution. For blends having identical compositions, it is possible to produce systems in which one and the same component may be either a dispersion medium or a dispersed phase [1]. This behavior of the polyblend systems depends on various parameters, the most important of which is the blending sequence. It is, therefore, difficult to obtain a uniform composition property relationship for the polymer blends even though the composition remains identical. [Pg.611]

The particle size of the dispersed phase depends upon the viscosity of the elastomer-monomer solution. Preferably the molecular weight of the polybutadiene elastomer should be around 2 x 10 and should have reasonable branching to reduce cold flow. Furthermore, the microstructure of the elastomer provides an important contribution toward the low-temperature impact behavior of the final product. It should also be emphasized that the use of EPDM rubber [136] or acrylate rubber [137] may provide improved weatherability. It has been observed that with an increase in agitator speed the mean diameter of the dispersed phase (D) decreases, which subsequently levels out at high shear [138-141]. However, reagglomeration may occur in the case of bulk... [Pg.657]

Theoretically, the fibrillation behavior of a dispersed phase in a matrix is dictated by many characteristic fac-... [Pg.690]

According to the criteria, the dispersed phase embedded in the matrix of sample 1 must have been deformed to a maximum aspect ratio and just began or have begun to break up. By observing the relative position of the experimental data to the critical curve, the deformational behavior of the other samples can be easily evaluated. Concerning the fibrillation behavior of the PC-TLCP composite studied, the Taylor-Cox criteria seems to be valid. [Pg.695]

In contrast to two-phase physical blends, the two-phase block and graft copolymer systems have covalent bonds between the phases, which considerably improve their mechanical strengths. If the domains of the dispersed phase are small enough, such products can be transparent. The thermal behavior of both block and graft two-phase systems is similar to that of physical blends. They can act as emulsifiers for mixtures of the two polymers from which they have been formed. [Pg.726]

The cost/performance factor of individual surfactants will always be considered in determining which surfactants are blended in a mixed active formulation. However, with the recent advent of compact powders and concentrated liquids, other factors, such as processing, density, powder flowability, water content, stabilization of additives, dispersibility in nonaqueous solvents, dispersion of builders, and liquid crystalline phase behavior, have become important in determining the selection of individual surfactants. [Pg.127]

Departures of the electrokinetic behavior of real systems from that described by the equations reported occurs most often because of breakdown of two of the assumptions above because of marked surface conductivity (particularly in dilute solutions, where the bulk conductivity is low) and because of a small characteristic size of the disperse-phase elements (e.g., breakdown of the condition of bg <5 r in extremely fine-porous diaphragms). A number of more complicated equations allowing for these factors have been proposed. [Pg.605]

The performance of demulsifiers can be predicted by the relationship between the film pressure of the demulsifier and the normalized area and the solvent properties of the demulsifier [1632]. The surfactant activity of the demulsifier is dependent on the bulk phase behavior of the chemical when dispersed in the crude oil emulsions. This behavior can be monitored by determining the demulsifier pressure-area isotherms for adsorption at the crude oil-water interface. [Pg.327]

Disperse systems can also be classified on the basis of their aggregation behavior as molecular or micellar (association) systems. Molecular dispersions are composed of single macromolecules distributed uniformly within the medium, e.g., protein and polymer solutions. In micellar systems, the units of the dispersed phase consist of several molecules, which arrange themselves to form aggregates, such as surfactant micelles in aqueous solutions. [Pg.244]

One of the most obvious properties of a disperse system is the vast interfacial area that exists between the dispersed phase and the dispersion medium [48-50]. When considering the surface and interfacial properties of the dispersed particles, two factors must be taken into account the first relates to an increase in the surface free energy as the particle size is reduced and the specific surface increased the second deals with the presence of an electrical charge on the particle surface. This section covers the basic theoretical concepts related to interfacial phenomena and the characteristics of colloids that are fundamental to an understanding of the behavior of any disperse systems having larger dispersed phases. [Pg.247]

To produce novel LC phase behavior and properties, a variety of polymer/LC composites have been developed. These include systems which employ liquid crystal polymers (5), phase separation of LC droplets in polymer dispersed liquid crystals (PDLCs) (4), incorporating both nematic (5,6) and ferroelectric liquid crystals (6-10). Polymer/LC gels have also been studied which are formed by the polymerization of small amounts of monomer solutes in a liquid crystalline solvent (11). The polymer/LC gel systems are of particular interest, rendering bistable chiral nematic devices (12) and polymer stabilized ferroelectric liquid crystals (PSFLCs) (1,13), which combine fast electro-optic response (14) with the increased mechanical stabilization imparted by the polymer (75). [Pg.17]

Upon loading a void-containing material, a certain stress distribution in the sample will develop that proceeds and determines the following deformation. Typically the voids (or other dispersed phase) will tend to concentrate stresses to interphases between materials of different modulus. Even though no complete picture exists of what will happen upon deformation, such a stress description may give a better understanding of the relation between stress concentrations in the sample due to the voids and the final fracture behavior. [Pg.223]

H. Kunieda and K. Shinoda Phase Behavior in Systems of Nonionic Surfac-tant/Water/Oil Around the Hydrophilic-Lypophilic-Balance-Temperature. J. Dispersion Sci. Technol. 3, 233 (1982). [Pg.46]

Leal-Calderon et al. [13] have proposed some basic ideas that control the colloidal interactions induced by solvent or a mixture of solvent and solute, when varying their length from molecular to colloidal scale. They have investigated the behavior of water- and glycerol-in oil emulsions in the presence of linear flexible chains of various masses. Figure 3.7 shows the phase behavior of both water and glycerol droplets of diameter 0.4 pm when dispersed in a linear aliphatic solvent of formula C H2 +2, from n = 5 to n = 30. Because, for n larger than 16, solvent crystallization occurs at room temperature, a second series of experiments... [Pg.114]


See other pages where Dispersed phase behavior is mentioned: [Pg.346]    [Pg.1419]    [Pg.119]    [Pg.586]    [Pg.586]    [Pg.591]    [Pg.658]    [Pg.670]    [Pg.674]    [Pg.59]    [Pg.496]    [Pg.444]    [Pg.246]    [Pg.365]    [Pg.90]    [Pg.120]    [Pg.124]    [Pg.3]    [Pg.170]    [Pg.99]    [Pg.908]    [Pg.97]    [Pg.151]    [Pg.133]    [Pg.161]    [Pg.233]    [Pg.234]    [Pg.239]    [Pg.29]    [Pg.52]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Disperse phase

Dispersion behavior

Dispersive phase

Phase behavior

Phase dispersion

© 2024 chempedia.info