Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole adsorption

The physical adsorption is characterized by weak intermolecular forces of the van der Waals type. The adsorbed particle must get close to the solid surface, since the van der Waals energy is proportional to the sixth power of reciprocal distance. The main feature of this interaction is its non-specificity, a considerable velocity and reversibility. An example of the physical adsorption is the adsorption of apolar molecules on an apolar surface resulting form disperse forces. Beside these forces the dipol-dipol interactions occur when molecules of the adsorbent or adsorbate can form permanent or induced dipoles (adsorption of gases or dipol liquids on apolar surfaces). [Pg.107]

Owing to the presence of narrow capillaries, the total surface area is not always available for catalysis or for other applications. The dipole adsorption of lauric acid from pentane solutions on the surface of polar substances, such as AI2O3, indicates the surface area available in the wider pores (47) a silica surface, however, is not polar enough for the general adsorption of lauric acid (37). [Pg.138]

An interesting alternative method for formulating f/(jt) was proposed in 1929 by de Boer and Zwikker [80], who suggested that the adsorption of nonpolar molecules be explained by assuming that the polar adsorbent surface induces dipoles in the first adsorbed layer and that these in turn induce dipoles in the next layer, and so on. As shown in Section VI-8, this approach leads to... [Pg.629]

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive force is due to charge fiuctuations in the surface and adsorbed molecules, such as mutually induced dipole moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus, most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium. [Pg.294]

A more dramatic type of restmctiiring occurs with the adsorption of alkali metals onto certain fee metal surfaces [39]. In this case, multilayer composite surfaces are fomied in which the alkali and metal atoms are intemiixed in an ordered stmcture. These stmctiires involve the substitution of alkali atoms into substrate sites, and the details of the stmctiires are found to be coverage-dependent. The stmctiires are influenced by the repulsion between the dipoles fomied by neighbouring alkali adsorbates and by the interactions of the alkalis with the substrate itself [40]. [Pg.299]

Only at extremely high electric fields are the water molecules fiilly aligned at the electrode surface. For electric fields of the size normally encountered, a distribution of dipole directions is found, whose half-widtli is strongly dependent on whether specific adsorption of ions takes place. In tlie absence of such adsorption the distribution fiinction steadily narrows, but in the presence of adsorption the distribution may show little change from that found at the PZC an example is shown in figure A2.4.10 [30]. [Pg.595]

Figure Bl.25.12 illustrates the two scattering modes for a hypothetical adsorption system consisting of an atom on a metal [3]. The stretch vibration of the atom perpendicular to the surface is accompanied by a change m dipole moment the bending mode parallel to the surface is not. As explained above, the EELS spectrum of electrons scattered in the specular direction detects only the dipole-active vibration. The more isotropically scattered electrons, however, undergo impact scattering and excite both vibrational modes. Note that the comparison of EELS spectra recorded in specular and off-specular direction yields infomiation about the orientation of an adsorbed molecule. Figure Bl.25.12 illustrates the two scattering modes for a hypothetical adsorption system consisting of an atom on a metal [3]. The stretch vibration of the atom perpendicular to the surface is accompanied by a change m dipole moment the bending mode parallel to the surface is not. As explained above, the EELS spectrum of electrons scattered in the specular direction detects only the dipole-active vibration. The more isotropically scattered electrons, however, undergo impact scattering and excite both vibrational modes. Note that the comparison of EELS spectra recorded in specular and off-specular direction yields infomiation about the orientation of an adsorbed molecule.
Surface electron charge density can be described in tenus of the work fiinction and the surface dipole moment can be calculated from it ( equatiou (Bl.26.30) and equation (B1.26.31)). Likewise, changes in the chemical or physical state of the surface, such as adsorption or geometric reconstruction, can be observed through a work-fimction modification. For studies related to cathodes, the work fiinction may be the most important surface parameter to be detenuined [52]. [Pg.1895]

Schematic diagram showing the development of a dipolar field and ionization on the surface of a metal filament, (a) As a neutral atom or molecule approaches the surface of the metal, the negative electrons and positive nuclei of the neutral and metal attract each other, causing dipoles to be set up in each, (b) When the neutral particle reaches the surface, it is attracted there by the dipolar field with an energy Q,. (c) If the values of 1 and <() are opposite, an electron can leave the neutral completely and produce an ion on the surface, and the heat of adsorption becomes Q,. Similarly, an ion alighting on the surface can produce a neutral, depending on the values of I and <(), On a hot filament the relative numbers of ions and neutrals that desorb are given by Equation 7.1,which includes the difference, I - <(), and the temperature, T,... Schematic diagram showing the development of a dipolar field and ionization on the surface of a metal filament, (a) As a neutral atom or molecule approaches the surface of the metal, the negative electrons and positive nuclei of the neutral and metal attract each other, causing dipoles to be set up in each, (b) When the neutral particle reaches the surface, it is attracted there by the dipolar field with an energy Q,. (c) If the values of 1 and <() are opposite, an electron can leave the neutral completely and produce an ion on the surface, and the heat of adsorption becomes Q,. Similarly, an ion alighting on the surface can produce a neutral, depending on the values of I and <(), On a hot filament the relative numbers of ions and neutrals that desorb are given by Equation 7.1,which includes the difference, I - <(), and the temperature, T,...
Forces of Adsorption. Adsorption may be classified as chemisorption or physical adsorption, depending on the nature of the surface forces. In physical adsorption the forces are relatively weak, involving mainly van der Waals (induced dipole—induced dipole) interactions, supplemented in many cases by electrostatic contributions from field gradient—dipole or —quadmpole interactions. By contrast, in chemisorption there is significant electron transfer, equivalent to the formation of a chemical bond between the sorbate and the soHd surface. Such interactions are both stronger and more specific than the forces of physical adsorption and are obviously limited to monolayer coverage. The differences in the general features of physical and chemisorption systems (Table 1) can be understood on the basis of this difference in the nature of the surface forces. [Pg.251]

Dispersion forces are always present and in the absence of any stronger force will determine equihbrium behavior, as with adsorption of molecules with no dipole or quadrupole moment on nonoxidized carbons and silicahte. [Pg.1503]

If a surface is polar, its resulting electric field will induce a dipole moment in a molecule with no permanent dipole and, through this polarization, increase the extent of adsorption. Similarly, a molecule with a permanent dipole moment will polarize an otherwise nonpolar surface, thereby increasing the attraction. [Pg.1503]

For a polar surface and molecules with permanent dipole moments, attraction is strong, as for water adsorption on a hydrophilic adsorbent. Similarly, for a polar surface, a molecule with a permanent quadrupole moment vidll be attracted more strongly than a similar molecule with a weaker moment for example, nitrogen is adsorbed more strongly than oxygen on zeolites (Sherman and Yon, gen. refs.). [Pg.1503]

RAIRS spectra contain absorption band structures related to electronic transitions and vibrations of the bulk, the surface, or adsorbed molecules. In reflectance spectroscopy the ahsorhance is usually determined hy calculating -log(Rs/Ro), where Rs represents the reflectance from the adsorhate-covered substrate and Rq is the reflectance from the bare substrate. For thin films with strong dipole oscillators, the Berre-man effect, which can lead to an additional feature in the reflectance spectrum, must also be considered (Sect. 4.9 Ellipsometry). The frequencies, intensities, full widths at half maximum, and band line-shapes in the absorption spectrum yield information about adsorption states, chemical environment, ordering effects, and vibrational coupling. [Pg.251]

Silica gel and aluminium oxide layers are highly active stationary phases with large surface areas which can, for example, — on heating — directly dehydrate, degrade and, in the presence of oxygen, oxidize substances in the layer This effect is brought about by acidic silanol groups [93] or is based on the adsorption forces (proton acceptor or donor effects, dipole interactions etc) The traces of iron in the adsorbent can also catalyze some reactions In the case of testosterone and other d -3-ketosteroids stable and quantifiable fluorescent products are formed on layers of basic aluminium oxide [176,195]... [Pg.88]

The orientational structure of water near a metal surface has obvious consequences for the electrostatic potential across an interface, since any orientational anisotropy creates an electric field that interacts with the metal electrons. Hydrogen bonds are formed mainly within the adsorbate layer but also between the adsorbate and the second layer. Fig. 3 already shows quite clearly that the requirements of hydrogen bond maximization and minimization of interfacial dipoles lead to preferentially planar orientations. On the metal surface, this behavior is modified because of the anisotropy of the water/metal interactions which favors adsorption with the oxygen end towards the metal phase. [Pg.362]

Let us consider the separation of polymethylmethacrylate (PMMA) on a nonmodified silica column as an example. In THE (medium polar eluent) the PMMA eludes in size exclusion mode because the dipoles of the methylmethacrylate (MMA) are masked by the dipoles of the THE. Using the nonpolar toluene as the eluent on the same column, the separation is governed by adsorption because the dipoles of the carbonyl group in the PMMA will interact with the dipoles on the surface of the stationary phase. The separation of PMMA in the critical mode of adsorption can be achieved by selecting an appropriate THF/toluene mixture as the eluent. In this case all PMMA samples... [Pg.274]

It is evident from these results that the interactive properties of the investigated SEC PS/DVB or DVB gels are very different. Because polar electroneutral macromolecules of PMMA were more retained from a nonpolar solvent (toluene) than from polar ones (THF, chloroform), we conclude that the dipol-dipol interactions were operative. Columns No. 1 and No. 2 were very interactive and can be applied successfully to LC techniques that combine exclusion and interaction (adsorption) mechanisms. These emerging techniques are LC at the critical adsorption point (18), the already mentioned LC under limiting conditions of adsorption (15,18), and LC under limiting conditions of desorption (16). In these cases, the adsorptivity of the SEC columns may even be advantageous. In most conventional SEC applications, however, the interactive properties of columns may cause important problems. In any case, interactive properties of SEC columns should be considered when applying the universal calibration, especially for medium polar and polar polymers. It is therefore advisable to check the elution properties of SEC columns before use with the... [Pg.455]

Finally, two sets of physical properties have been correlated by the Hammett equation. Sharpe and Walker have shown that changes in dipole moment are approximately linearly correlated with ct-values, and Snyder has recently correlated the free energies of adsorption of a series of substituted pyridines with u-values. All the reaction constants for the series discussed are summarized in Table V. [Pg.232]

Thus the potential difference at the interface between a metal and electrolyte solution is due to both the charges at the interface (electrostatic potential difference) and the surface dipole layers the latter is referred to as the surface or adsorption potential difference. On the basis of the above considerations it might appear that adsorption at a metal surface with an excess charge is solely due to electrostatic interaction with charged species in the solution, i.e. if the metal surface has an excess negative charge the cations... [Pg.1169]

Fig. 20.3 Adsorption of water dipoles, (a) A water dipole showing the positive hydrogen end and negative oxygen end, b) adsorption on metal with large negative excess charge, (c) adsorption on metal with large positive excess charge and (d) adsorption on metal with small negative... Fig. 20.3 Adsorption of water dipoles, (a) A water dipole showing the positive hydrogen end and negative oxygen end, b) adsorption on metal with large negative excess charge, (c) adsorption on metal with large positive excess charge and (d) adsorption on metal with small negative...

See other pages where Dipole adsorption is mentioned: [Pg.106]    [Pg.249]    [Pg.106]    [Pg.249]    [Pg.244]    [Pg.295]    [Pg.394]    [Pg.701]    [Pg.300]    [Pg.1783]    [Pg.1889]    [Pg.1889]    [Pg.270]    [Pg.270]    [Pg.271]    [Pg.271]    [Pg.278]    [Pg.448]    [Pg.540]    [Pg.541]    [Pg.254]    [Pg.451]    [Pg.457]    [Pg.695]    [Pg.807]    [Pg.808]    [Pg.809]    [Pg.1169]    [Pg.1182]    [Pg.1183]   


SEARCH



Adsorption-induced dipole moment

Dipole adsorption induced changes

Interfacial dipole moment induced by contact adsorption

© 2024 chempedia.info