Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole liquids

The physical adsorption is characterized by weak intermolecular forces of the van der Waals type. The adsorbed particle must get close to the solid surface, since the van der Waals energy is proportional to the sixth power of reciprocal distance. The main feature of this interaction is its non-specificity, a considerable velocity and reversibility. An example of the physical adsorption is the adsorption of apolar molecules on an apolar surface resulting form disperse forces. Beside these forces the dipol-dipol interactions occur when molecules of the adsorbent or adsorbate can form permanent or induced dipoles (adsorption of gases or dipol liquids on apolar surfaces). [Pg.107]

Different dipole liquids, similarly, attract each others molecules by suitable orientation of the dipoles and form stable solutions. We have already mentioned the case of alcohol and water. In ammonia and water, the interaction between neighboring ammonia and water molecules is so strong that they form the ammonium complex, leading to NH4OH... [Pg.272]

Distance between the centers of two neighboring water layers Distance indicating the location of the surface dipoles Liquid fraction... [Pg.99]

There is, of course, a mass of rather direct evidence on orientation at the liquid-vapor interface, much of which is at least implicit in this chapter and in Chapter IV. The methods of statistical mechanics are applicable to the calculation of surface orientation of assymmetric molecules, usually by introducing an angular dependence to the inter-molecular potential function (see Refs. 67, 68, 77 as examples). Widom has applied a mean-held approximation to a lattice model to predict the tendency of AB molecules to adsorb and orient perpendicular to the interface between phases of AA and BB [78]. In the case of water, a molecular dynamics calculation concluded that the surface dipole density corresponded to a tendency for surface-OH groups to point toward the vapor phase [79]. [Pg.65]

The gradient model for interfacial tension described in Eqs. III-42 and III-43 is limited to interaction potentials that decay more rapidly than r. Thus it can be applied to the Lennard-Jones potential but not to a longer range interaction such as dipole-dipole interaction. Where does this limitation come from, and what does it imply for interfacial tensions of various liquids ... [Pg.92]

McConnell et al. [196] and Andelman and co-workers have predicted [197,198] an ordered array of liquid domains in the gas-liquid coexistence regime caused by the dipole moment difference between the phases. These superstructures were observed in monolayers of dipalmitoyl phosphatidylcholine monolayers [170]. [Pg.132]

The heat of immersion is measured calorimetrically with finely divided powders as described by several authors [9,11-14] and also in Section XVI-4. Some hi data are given in Table X-1. Polar solids show large heats of immersion in polar liquids and smaller ones in nonpolar liquids. Zetdemoyer [15] noted that for a given solid, hi was essentially a linear function of the dipole moment of the wetting liquid. [Pg.349]

Because of the charged nature of many Langmuir films, fairly marked effects of changing the pH of the substrate phase are often observed. An obvious case is that of the fatty-acid monolayers these will be ionized on alkaline substrates, and as a result of the repulsion between the charged polar groups, the film reverts to a gaseous or liquid expanded state at a much lower temperature than does the acid form [121]. Also, the surface potential drops since, as illustrated in Fig. XV-13, the presence of nearby counterions introduces a dipole opposite in orientation to that previously present. A similar situation is found with long-chain amines on acid substrates [122]. [Pg.557]

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive force is due to charge fiuctuations in the surface and adsorbed molecules, such as mutually induced dipole moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus, most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium. [Pg.294]

The SPC/E model approximates many-body effects m liquid water and corresponds to a molecular dipole moment of 2.35 Debye (D) compared to the actual dipole moment of 1.85 D for an isolated water molecule. The model reproduces the diflfiision coefficient and themiodynamics properties at ambient temperatures to within a few per cent, and the critical parameters (see below) are predicted to within 15%. The same model potential has been extended to include the interactions between ions and water by fitting the parameters to the hydration energies of small ion-water clusters. The parameters for the ion-water and water-water interactions in the SPC/E model are given in table A2.3.2. [Pg.440]

Given the interest and importance of chiral molecules, there has been considerable activity in investigating die corresponding chiral surfaces [, and 70]. From the point of view of perfomiing surface and interface spectroscopy with nonlinear optics, we must first examhie the nonlinear response of tlie bulk liquid. Clearly, a chiral liquid lacks inversion synnnetry. As such, it may be expected to have a strong (dipole-allowed) second-order nonlinear response. This is indeed true in the general case of SFG [71]. For SHG, however, the pemiutation synnnetry for the last two indices of the nonlinear susceptibility tensor combined with the... [Pg.1286]

Phosphine is a colourless gas at room temperature, boiling point 183K. with an unpleasant odour it is extremely poisonous. Like ammonia, phosphine has an essentially tetrahedral structure with one position occupied by a lone pair of electrons. Phosphorus, however, is a larger atom than nitrogen and the lone pair of electrons on the phosphorus are much less concentrated in space. Thus phosphine has a very much smaller dipole moment than ammonia. Hence phosphine is not associated (like ammonia) in the liquid state (see data in Table 9.2) and it is only sparingly soluble in water. [Pg.226]

Because of the presence of the lone pairs of electrons, the molecule has a dipole moment (and the liquid a high permittivity or dielectric constant). [Pg.269]

TIk experimentally determined dipole moment of a water molecule in the gas phase is 1.85 D. The dipole moment of an individual water molecule calculated with any of thv se simple models is significantly higher for example, the SPC dipole moment is 2.27 D and that for TIP4P is 2.18 D. These values are much closer to the effective dipole moment of liquid water, which is approximately 2.6 D. These models are thus all effective pairwise models. The simple water models are usually parametrised by calculating various pmperties using molecular dynamics or Monte Carlo simulations and then modifying the... [Pg.235]

The range of systems that have been studied by force field methods is extremely varied. Some force fields liave been developed to study just one atomic or molecular sp>ecies under a wider range of conditions. For example, the chlorine model of Rodger, Stone and TUdesley [Rodger et al 1988] can be used to study the solid, liquid and gaseous phases. This is an anisotropic site model, in which the interaction between a pair of sites on two molecules dep>ends not only upon the separation between the sites (as in an isotropic model such as the Lennard-Jones model) but also upon the orientation of the site-site vector with resp>ect to the bond vectors of the two molecules. The model includes an electrostatic component which contciins dipwle-dipole, dipole-quadrupole and quadrupole-quadrupole terms, and the van der Waals contribution is modelled using a Buckingham-like function. [Pg.249]

All of these time correlation functions contain time dependences that arise from rotational motion of a dipole-related vector (i.e., the vibrationally averaged dipole P-avejv (t), the vibrational transition dipole itrans (t) or the electronic transition dipole ii f(Re,t)) and the latter two also contain oscillatory time dependences (i.e., exp(icofv,ivt) or exp(icOfvjvt + iAEi ft/h)) that arise from vibrational or electronic-vibrational energy level differences. In the treatments of the following sections, consideration is given to the rotational contributions under circumstances that characterize, for example, dilute gaseous samples where the collision frequency is low and liquid-phase samples where rotational motion is better described in terms of diffusional motion. [Pg.427]

Induced dipole/mduced dipole attractions are very weak forces individually but a typical organic substance can participate m so many of them that they are collectively the most important of all the contributors to mtermolecular attraction m the liquid state They are the only forces of attraction possible between nonpolar molecules such as alkanes... [Pg.82]

Both polar compounds ethanol and fluoroethane have higher boiling points than the nonpolar propane We attribute this to a combination of dipole/mduced dipole and dipole-dipole attractive forces that are present m the liquid states of ethanol and fluo roethane but absent m propane... [Pg.148]

Revised material for Section 5 includes the material on surface tension, viscosity, dielectric constant, and dipole moment for organic compounds. In order to include more data at several temperatures, the material has been divided into two separate tables. Material on surface tension and viscosity constitute the first table with 715 entries included is the temperature range of the liquid phase. Material on dielectric constant and dipole... [Pg.1283]

It should also be remembered that the selection mles derived here are relevant to the free molecule and may break down in the liquid or solid state. This is the case, for example, with the electric dipole forbidden 4q transition in ethylene, where V4 is the torsional vibration shown in Figure 6.23. It is not observed in the infrared specttum of the gas but is observed weakly in the liquid and solid phases. [Pg.172]


See other pages where Dipole liquids is mentioned: [Pg.153]    [Pg.153]    [Pg.319]    [Pg.120]    [Pg.227]    [Pg.244]    [Pg.835]    [Pg.1297]    [Pg.1500]    [Pg.1978]    [Pg.2255]    [Pg.2543]    [Pg.2554]    [Pg.204]    [Pg.220]    [Pg.232]    [Pg.236]    [Pg.355]    [Pg.394]    [Pg.622]    [Pg.635]    [Pg.434]    [Pg.82]    [Pg.209]    [Pg.204]    [Pg.8]    [Pg.8]    [Pg.381]    [Pg.42]    [Pg.192]    [Pg.8]   
See also in sourсe #XX -- [ Pg.268 ]

See also in sourсe #XX -- [ Pg.268 ]




SEARCH



© 2024 chempedia.info