Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Dipolar cycloadditions example

Heterocyclics of all sizes, as long as they are unsaturated, can serve as dipolarophiles and add to external 1,3-dipoles. Examples involving small rings are not numerous. Thiirene oxides add 1,3-dipoles, such as di azomethane, with subsequent loss of the sulfur moiety (Section 5.06.3.8). As one would expect, unsaturated large heterocyclics readily provide the two-atom component for 1,3-dipolar cycloadditions. Examples are found in the monograph chapters, such as those on azepines and thiepines (Sections 5.16.3.8.1 and 5.17.2.4.4). [Pg.28]

The 1,3-dipolar cycloadditions of 1,3-dipoles with chiral alkenes has been extensively reviewed and thus only selected examples will be highlighted here. We have chosen to divide this section on the basis of the different types of alkenes rather than on the basis of the type of 1,3-dipole. For 1,3-dipolar cycloadditions, as well as for other reactions, it is important that the chiral center intended to control the stereoselectivity of the reaction is located as close as possible to the functional group of the molecule at which the reaction takes place. Hence, alkenes bearing the chiral center vicinal to the double bond are most frequently apphed in asymmetric 1,3-dipolar cycloadditions. Examples of the application of alkenes with the chiral center localized two or more bonds apart from the alkene will also be mentioned. Application of chiral auxiliaries for alkenes is very common and will be described separately in Section 12.3. [Pg.835]

When the chain between the azirine ring and the alkene end is extended to three carbon atoms, the normal mode of 1,3-intramolecular dipolar cycloaddition occurs. For example, irradiation of azirine (73) gives A -pyrroline (74) in quantitative yield 77JA1871). In this case the methylene chain is sufficiently long to allow the dipole and alkenic portions to approach each other in parallel planes. [Pg.59]

The interaction of diazomethane with 1-azirines was the first example of a 1,3-dipolar cycloaddition with this ring system (64JOC3049, 68JOC4316). 1,3-Dipolar addition produces the triazoline adduct (87). This material can exist in equilibrium with its valence tautomer (88), and allylic azides (89) and (90) can be produced from these triazolines by ring cleavage. [Pg.60]

A variety of 1-azirines are available (40-90%) from the thermally induced extrusion (>100 °C) of triphenylphosphine oxide from oxazaphospholines (388) (or their acyclic betaine equivalents), which are accessible through 1,3-dipolar cycloaddition of nitrile oxides (389) to alkylidenephosphoranes (390) (66AG(E)1039). Frequently, the isomeric ketenimines (391) are isolated as by-products. The presence of electron withdrawing functionality in either or both of the addition components can influence the course of the reaction. For example, addition of benzonitrile oxide to the phosphorane ester (390 = C02Et) at... [Pg.89]

The stereochemistry of the 1,3-dipolar cycloaddition reaction is analogous to that of the Diels-Alder reaction and is a stereospecific syn addition. Diazomethane, for example, adds stereospecifically to the diesters 43 and 44 to yield the pyrazolines 45 and 46, respectively. [Pg.646]

The regioselectivity of 1,3-dipolar cycloadditions can also be analyzed by MO calculations on transition-state models. For example, there are two possible regioisomers from the reaction of diazomethane and methyl vinyl ether, but only the 3-methoxy isomer is formed. [Pg.648]

Fluorinated a., -unsaturated carbonyl compounds also are reactive dipo-larophiles Because ol the highly activating carbonyl substituent, these 1,3-dipolar cycloadditions are rapid and regiospecific Good examples are the additions of... [Pg.804]

Some 1,3-dipolar cycloadditions to hetero ft bond systems have been reported, including a couple of examples of additions of azides to the activated nitrile function of tnfluoroacetonitrile [30, 3I (equation 27)... [Pg.807]

Another triflate ester that recently has found growing application in organic synthesis is commercially available trimethylsilylmethyl trifluoromethanesul fonate. This powerful alkylating reagent can be used for the synthesis of various methylides by an alkylation-desilylation sequence A representative example is the generation and subsequent trapping by 1,3-dipolar cycloaddition of indolium methanides from the corresponding indole derivatives and trimethylsilylmethyl trifluoromethanesulfonate [108] (equation 54)... [Pg.962]

An example of 1,3-dipolar cycloaddition involving a thiazole dioxide derivative was described (99T(55)201). A-Benzoyl-(R)-thiazolidin-4-carboxylic acid 5,5-dioxide 120 was cyclized to the bicylic mesoionic thiazolo-oxazolium 5,5-dioxide with Ac O and reacted with the imine 121 in DMF... [Pg.86]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

Zinc-tartrate complexes were applied for reactions of both nitrones and nitrile oxides with allyl alcohol and for both reaction types selectivities of more than 90% ee were obtained. Whereas the reactions of nitrones required a stoichiometric amount of the catalyst the nitrile oxide reactions could be performed in the presence of 20 mol% of the catalyst. This is the only example on a metal-catalyzed asymmetric 1,3-dipolar cycloaddition of nitrile oxides. It should however be no-... [Pg.244]

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]

A well-known example for a 1,3-dipolar compound is ozone. The reaction of ozone with an olefin is a 1,3-dipolar cycloaddition (see ozonolysis). [Pg.75]

The importance of the 1,3-dipolar cycloaddition reaction for the synthesis of five-membered heterocycles arises from the many possible dipole/dipolarophile combinations. Five-membered heterocycles are often found as structural subunits of natural products. Furthermore an intramolecular variant makes possible the formation of more complex structures from relatively simple starting materials. For example the tricyclic compound 10 is formed from 9 by an intramolecular cycloaddition in 80% yield ... [Pg.76]

The class of 1,3-dipolar cycloadditions embraces a variety of reactions that can accomplish the synthesis of a diverse array of polyfunctional and stereochemically complex five-membered rings.3 The first report of a 1,3-dipolar cycloaddition of a nitrone (a 1,3-dipole) to phenyl isocyanate (a dipolarophile) came from Beckmann s laboratory in 1890,4 and a full 70 years elapsed before several investigators simultaneously reported examples of nitrone-olefin [3+2] cycloadditions.5 The pioneering and brilliant investigations of Huisgen and his coworkers6 have deepened our under-... [Pg.285]

The only examples of fully unsaturated tetrazoloazepines, e.g. 3, have been prepared by an unusual and intriguing reaction involving the action of azide ion on 4,7-disulfonylbenzofurazan 1-oxides, e.g. I.148 A mechanistic rationale involving intramolecular 1,3-dipolar cycloaddition of an azidonitrile intermediate, e.g. 2, has been proposed. [Pg.243]

An interpretation based on frontier molecular orbital theory of the regiochemistry of Diels Alder and 1,3-dipolar cycloaddition reactions of the triazepine 3 is available.343 2,4,6-Trimethyl-benzonitrile oxide, for example, yields initially the adduct 6.344... [Pg.458]

The first [3S+2C] cycloaddition reaction using a Fischer carbene complex was accomplished by Fischer et al. in 1973 when they reported the reaction of the pentacarbonyl(ethoxy)(phenylethynyl)carbene complex of tungsten and diazomethane to give a pyrazole derivative [45]. But it was 13 years later when Chan and Wulff demonstrated that in fact this was the first example of a 1,3-dipolar cycloaddition reaction [46,47a]. The introduction of a bulky trime-thylsilyl group on the diazomethane in order to prevent carbene-carbon olefi-nation leads to the corresponding pyrazole carbene complexes in better yields (Scheme 15). [Pg.72]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Kappe and co-workers proposed an application of a microwave-assisted Huisgen 1,3-dipolar cycloaddition of terminal acetylenes and azides 70, imder Cu(I) catalysis, as an example of click chemistry to obtain a collection of... [Pg.228]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

Two issues are of essential for predicting the structure of 1,3-DCA products (1) What is the regiochemistry and (2) What is the stereochemistry Many specific examples demonstrate that 1,3-dipolar cycloaddition is a stereospecific syn addition with respect to the dipolarophile, as expected for a concerted process. [Pg.528]

Another interesting variation of the 1,3-dipolar cycloaddition involves generation of 1,3-dipoles from three-membered rings. As an example, aziridines 7 and 8 give adducts derived from apparent formation of 1,3-dipoles 9 and 10, respectively.148... [Pg.531]

By combining several click reactions, click chemistry allows for the rapid synthesis of useful new compounds of high complexity and combinatorial libraries. The 2-type reaction of the azide ion with a variety of epoxides to give azido alcohols has been exploited extensively in click chemistry. First of all, azido alcohols can be converted into amino alcohols upon reduction.70 On the other hand, aliphatic azides are quite stable toward a number of other standard organic synthesis conditions (orthogonality), but readily undergo 1,3-dipolar cycloaddition with alkynes. An example of the sequential reactions of... [Pg.159]

The 1,3-dipolar cycloadditions of N3 with coordinated nitriles (211) may result in formation of 5-substituted tetrazole complexes (212). Some examples include [Co(NH3)5(N4R)]2+-(R =p-methylphenyl, /uchlorophenyl, /unitrophenyl (N1 bound), m-formylphenyl N2 bound)). [Pg.77]

Scheme 2.183. Examples of the domino nitrone formation/1,3-dipolar cycloaddition. Scheme 2.183. Examples of the domino nitrone formation/1,3-dipolar cycloaddition.
The combination of pericyclic transformations as cycloadditions, sigmatropic rearrangements, electrocydic reactions and ene reactions with each other, and also with non-pericyclic transformations, allows a very rapid increase in the complexity of products. As most of the pericyclic reactions run quite well under neutral or mild Lewis acid acidic conditions, many different set-ups are possible. The majority of the published pericyclic domino reactions deals with two successive cycloadditions, mostly as [4+2]/[4+2] combinations, but there are also [2+2], [2+5], [4+3] (Nazarov), [5+2], and [6+2] cycloadditions. Although there are many examples of the combination of hetero-Diels-Alder reactions with 1,3-dipolar cycloadditions (see Section 4.1), no examples could be found of a domino all-carbon-[4+2]/[3+2] cycloaddition. Co-catalyzed [2+2+2] cycloadditions will be discussed in Chapter 6. [Pg.280]

Since the number of domino processes which start with a Diels-Alder reaction is rather large, we have subdivided this section of the chapter according to the second step, which might be a second Diels-Alder reaction, a 1,3-dipolar cycloaddition, or a sigmatropic rearrangement. However, there are also several examples where the following reaction is not a pericyclic but rather is an aldol reaction these examples will be discussed under the term Mixed Transformations . [Pg.282]

In contrast to the lack of examples of the domino Diels-Alder reaction/l,3-dipolar cycloaddition, the combination of a Diels-Alder reaction with a sigmatropic rearrangement has been used intensively. [Pg.285]

As with all-carbon Diels-Alder reactions, the hetero-Diels-Alder reaction [41] can also be used as the first step in many combinations with other transformations. In contrast to the normal Diels-Alder reaction, several examples are known where the first step is followed by a 1,3-dipolar cycloaddition. This type of domino reaction has been especially investigated by Denmark and coworkers, and used for the synthesis of several complex natural products. Since Denmark has reviewed his studies in... [Pg.296]


See other pages where 1.3- Dipolar cycloadditions example is mentioned: [Pg.439]    [Pg.28]    [Pg.60]    [Pg.611]    [Pg.155]    [Pg.228]    [Pg.241]    [Pg.285]    [Pg.454]    [Pg.257]    [Pg.150]    [Pg.298]    [Pg.367]    [Pg.1335]    [Pg.135]    [Pg.178]   
See also in sourсe #XX -- [ Pg.533 ]




SEARCH



1.3- dipolar cycloaddition reactions examples

Cycloaddition examples

Cycloadditions example

Dipolar examples

© 2024 chempedia.info