Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethyl routes

At first, the dimeric nature of the base isolated from 3-ethyl-2-methyl-4-phenylthiazolium was postulated via a chemical route. Indeed the adduct of ICH, on a similar 2-ethylidene base is a 2-isopropylthiazolium salt in the case of methylene base it is an anilinovinyl compound identified by its absorption spectrum and chemical reactivity (45-47). This dimeric structure of the molecule has been definitively established by its NMR spectrum. It is very similar to the base issued from 2.3-dimethyl-benzo thiazolium (48). It corresponds to 2-(3 -ethyl-4 -phenyl-2 -methylenethiazolinilydene)2-methyl-3-ethyl-4-phenylthiazoline (13). There is only one methyl signal (62 = 2.59), and two series of signals (63= 1.36-3.90, 63= 1.12-3.78) correspond to ethyl groups. Three protons attributed to positions T,5,5 are shifted to a lower field 5.93, 6.58, and 8.36 ppm. The bulk of the ten phenyl protons is at 7.3 ppm (Scheme 22). [Pg.39]

These methods were not applicable to all acids, and various alternative routes were investigated. The conversion of an acid to its methri ester by diazomethane is a method of choice when other methods are unsatisfactory (6, 30, 61, 65). With appropriate alcohols thiazoleanhydrkies give the esters or diesters in good yield (64), dimethyl 2-phoiyl-4,5-thiazoledicarboxylate (13) has been prepared in this way (Scheme 8) (17). [Pg.525]

Both dimethyl carbonate [616-38-6] and diphenyl carbonate [102-09-0] have been used, in place of carbon monoxide, as reagents for the conversion of amines into isocyanates via this route (28,29). Alternatively, aniline [62-53-3] toluene diamines (I JJA), and methylene dianilines (MDA) have also been used as starting materials in the carbonylations to provide a wide variety of isocyanate monomers. [Pg.448]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

Vinyl Pyrroles. Relatively new synthetic routes based on a one-pot reaction between ketoximes and acetjiene ia an alkaU metal hydroxide—dimethyl sulfoxide (DMSO) system have made vinyl pyrroles accessible. It requires no pyrrole precursors and uses cheap and readily available ketones (42). [Pg.358]

SuIfona.tlon, Sulfonation is a common reaction with dialkyl sulfates, either by slow decomposition on heating with the release of SO or by attack at the sulfur end of the O—S bond (63). Reaction products are usually the dimethyl ether, methanol, sulfonic acid, and methyl sulfonates, corresponding to both routes. Reactive aromatics are commonly those with higher reactivity to electrophilic substitution at temperatures > 100° C. Tn phenylamine, diphenylmethylamine, anisole, and diphenyl ether exhibit ring sulfonation at 150—160°C, 140°C, 155—160°C, and 180—190°C, respectively, but diphenyl ketone and benzyl methyl ether do not react up to 190°C. Diphenyl amine methylates and then sulfonates. Catalysis of sulfonation of anthraquinone by dimethyl sulfate occurs with thaHium(III) oxide or mercury(II) oxide at 170°C. Alkyl interchange also gives sulfation. [Pg.200]

The reduction of (aLkylarnino)haloboranes using hydride reagents can provide a convenient route to (aLkylamino)boranes for example, LiAlH has been utilized to prepare bis (dimethyl amino)borane [23884-11-9] from chi orobis (dimethyl amino)borane [6562-41-0] (68). When this same strategy is appHed to (bis(trimethylsi1y1)amino)ch1oro((trimethylsi1y1)amino)borane [10078-93-0] the expected compound is obtained along with the formation of two... [Pg.263]

The first CO route to make adipic acid is a BASF process employing CO and methanol in a two-step process producing dimethyl adipate [627-93-0] which is then hydroly2ed to the acid (43—46). Cobalt carbonyl catalysts such as Co2(CO)g are used. Palladium catalysts can be used to effect the same reactions at lower pressures (47—49). [Pg.342]

G s-Ph se Synthesis. A gas-phase synthesis route to making fine, pure SiC having controllable properties has been described (78,79). Methane was used as a carbon source if required, and the plasma decomposition of three feedstocks, siUcon tetrachloride [10026-04-7] SiCl, dimethyl dichi orosilane, and methyltrichlorosilane [75-79-6] CH Cl Si, into fine SiC powders was investigated. [Pg.466]

Other Rea.ctlons, The anhydride of neopentanoic acid, neopentanoyl anhydride [1538-75-6] can be made by the reaction of neopentanoic acid with acetic anhydride (25). The reaction of neopentanoic acid with acetone using various catalysts, such as titanium dioxide (26) or 2irconium oxide (27), gives 3,3-dimethyl-2-butanone [75-97-8] commonly referred to as pinacolone. Other routes to pinacolone include the reaction of pivaloyl chloride [3282-30-2] with Grignard reagents (28) and the condensation of neopentanoic acid with acetic acid using a rare-earth oxide catalyst (29). Amides of neopentanoic acid can be prepared direcdy from the acid, from the acid chloride, or from esters, using primary or secondary amines. [Pg.103]

An alternative route from l-aminoanthraquinone (17) has been proposed. Methylation is preferably carried out usiag dimethyl sulfate or methyl iodide ia an organic solvent ia the presence of alkah metal hydroxide and a catalytic amount of quaternary ammonium compound (98). [Pg.318]

Seb cic Acid. Sebacic acid [111-20-6] C QH gO, is an important intermediate in the manufacture of polyamide resins (see Polyamides). It has an estimated demand worldwide of approximately 20,000 t/yr. The alkaline hydrolysis of castor oil (qv), which historically has shown some wide fluctuations in price, is the conventional method of preparation. Because of these price fluctuations, there have been years of considerable interest in an electrochemical route to sebacic acid based on adipic acid [124-04-9] (qv) as the starting material. The electrochemical step involves the Kolbn-type or Brown-Walker reaction where anodic coupling of the monomethyl ester of adipic acid forms dimethyl sebacate [106-79-6]. The three steps in the reaction sequence from adipic acid to sebacic acid are as follows ... [Pg.102]

The other three methods have not been studied extensively. The dimethyl-cadmium route has been used on a 17a-methyl-17 -carboxylic acid. ° The reaction of the acid amide with a Grignard reagent is described only in a Spanish patent,with a high yield claimed, and the methyllithium reaction has apparently been tried only on D-norsteroids. ... [Pg.175]

In the onginal route to isoflurane, the methyl ether of tnfluoroethanol is made with dimethyl sulfate [.S] followed by careful chlorination of the methyl group to make the dichloromethyl ether. This ether is fluorinated with hydrogen fluoride and an antimony catalyst and the final step is monochlorination of the a carbon of the ethyl group [S] (equation 2)... [Pg.1134]

The zwitterion (22) obtained from 1-phenacylpyridinium bromide (21) and dimethyl acetylenedicarboxylate in the presence of palladium on charcoal yields the indolizine (23) possibly through the route shown. [Pg.130]

UV irradiation. Indeed, thermal reaction of 1-phenyl-3,4-dimethylphosphole with (C5HloNH)Mo(CO)4 leads to 155 (M = Mo) and not to 154 (M = Mo, R = Ph). Complex 155 (M = Mo) converts into 154 (M = Mo, R = Ph) under UV irradiation. This route was confirmed by a photochemical reaction between 3,4-dimethyl-l-phenylphosphole and Mo(CO)6 when both 146 (M = Mo, R = Ph, R = R = H, R = R" = Me) and 155 (M = Mo) resulted (89IC4536). In excess phosphole, the product was 156. A similar chromium complex is known [82JCS(CC)667]. Complex 146 (M = Mo, R = Ph, r2 = R = H, R = R = Me) enters [4 -H 2] Diels-Alder cycloaddition with diphenylvinylphosphine to give 157. However, from the viewpoint of Woodward-Hoffmann rules and on the basis of the study of UV irradiation of 1,2,5-trimethylphosphole, it is highly probable that [2 - - 2] dimers are the initial products of dimerization, and [4 - - 2] dimers are the final results of thermally allowed intramolecular rearrangement of [2 - - 2] dimers. This hypothesis was confirmed by the data obtained from the reaction of 1-phenylphosphole with molybdenum hexacarbonyl under UV irradiation the head-to-tail structure of the complex 158. [Pg.144]


See other pages where Dimethyl routes is mentioned: [Pg.78]    [Pg.351]    [Pg.338]    [Pg.210]    [Pg.218]    [Pg.261]    [Pg.455]    [Pg.293]    [Pg.294]    [Pg.382]    [Pg.441]    [Pg.111]    [Pg.198]    [Pg.202]    [Pg.44]    [Pg.45]    [Pg.514]    [Pg.102]    [Pg.118]    [Pg.313]    [Pg.314]    [Pg.315]    [Pg.131]    [Pg.88]    [Pg.27]    [Pg.80]    [Pg.121]    [Pg.177]    [Pg.257]    [Pg.21]    [Pg.71]    [Pg.115]    [Pg.164]    [Pg.141]    [Pg.152]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Dimethyl phosgene route

© 2024 chempedia.info