Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusivity benzene

Poly(styrene) Brownian diffusion Benzene, cyclohexane 2079... [Pg.1833]

For cyclic compounds, it is necessary to reduce the volume obtained by 0.0183 m /kmol. For example, benzene has a volume of diffusion of ... [Pg.147]

The oil droplets in a certain benzene-water emulsion are nearly uniform in size and show a diffusion coefficient of 3.75 x 10 cm /sec at 25°C. Estimate the number of benzene molecules in each droplet. [Pg.527]

This consideration prompted an investigation of the nitration of benzene and some more reactive compounds in aqueous sulphuric and perchloric acids, to establish to what extent the reactions of these compounds were affected by the speed of diffusion together of the active species. ... [Pg.27]

Cyclohexane, produced from the partial hydrogenation of benzene [71-43-2] also can be used as the feedstock for A manufacture. Such a process involves selective hydrogenation of benzene to cyclohexene, separation of the cyclohexene from unreacted benzene and cyclohexane (produced from over-hydrogenation of the benzene), and hydration of the cyclohexane to A. Asahi has obtained numerous patents on such a process and is in the process of commercialization (85,86). Indicated reaction conditions for the partial hydrogenation are 100—200°C and 1—10 kPa (0.1—1.5 psi) with a Ru or zinc-promoted Ru catalyst (87—90). The hydration reaction uses zeotites as catalyst in a two-phase system. Cyclohexene diffuses into an aqueous phase containing the zeotites and there is hydrated to A. The A then is extracted back into the organic phase. Reaction temperature is 90—150°C and reactor residence time is 30 min (91—94). [Pg.242]

Selective Toluene Disproportionation. Toluene disproportionates over ZSM-5 to benzene and a mixture of xylenes. Unlike this reaction over amorphous sihca—alumina catalyst, ZSM-5 produces a xylene mixture with increased -isomer content compared with the thermodynamic equihbtium. Chemical modification of the zeohte causing the pore diameter to be reduced produces catalysts that achieve almost 100% selectivity to -xylene. This favorable result is explained by the greatly reduced diffusivity of 0- and / -xylene compared with that of the less bulky -isomer. For the same reason, large crystals (3 llm) of ZSM-5 produce a higher ratio of -xyleneitotal xylenes than smaller crystahites (28,57). [Pg.458]

Manufacture and Processing. Mononitrotoluenes are produced by the nitration of toluene in a manner similar to that described for nitrobenzene. The presence of the methyl group on the aromatic ring faciUtates the nitration of toluene, as compared to that of benzene, and increases the ease of oxidation which results in undesirable by-products. Thus the nitration of toluene generally is carried out at lower temperatures than the nitration of benzene to minimize oxidative side reactions. Because toluene nitrates at a faster rate than benzene, the milder conditions also reduce the formation of dinitrotoluenes. Toluene is less soluble than benzene in the acid phase, thus vigorous agitation of the reaction mixture is necessary to maximize the interfacial area of the two phases and the mass transfer of the reactants. The rate of a typical industrial nitration can be modeled in terms of a fast reaction taking place in a zone in the aqueous phase adjacent to the interface where the reaction is diffusion controlled. [Pg.70]

Various types of detector tubes have been devised. The NIOSH standard number S-311 employs a tube filled with 420—840 p.m (20/40 mesh) activated charcoal. A known volume of air is passed through the tube by either a handheld or vacuum pump. Carbon disulfide is used as the desorbing solvent and the solution is then analyzed by gc using a flame-ionization detector (88). Other adsorbents such as siUca gel and desorbents such as acetone have been employed. Passive (diffuse samplers) have also been developed. Passive samplers are useful for determining the time-weighted average (TWA) concentration of benzene vapor (89). Passive dosimeters allow permeation or diffusion-controlled mass transport across a membrane or adsorbent bed, ie, activated charcoal. The activated charcoal is removed, extracted with solvent, and analyzed by gc. Passive dosimeters with instant readout capabiUty have also been devised (85). [Pg.46]

Acute benzene poisoning results in CNS depression and is characterized by an initial euphoria followed by staggered gait, stupor, coma, and convulsions. Exposure to approximately 4000 ppm benzene results in complete loss of consciousness. Insomnia, agitation, headache, nausea, and drowsiness may persist for weeks after exposure (126). Continued inhalation of benzene to the point of euphoria has caused irreversible encephalopathy with tremulousness, emotional lability, and diffuse cerebral atrophy (125). In deaths arising from acute exposure, respiratory tract infection, hypo- and hyperplasia of sternal bone marrow, congested kidneys, and cerebral edema have been found at autopsy. [Pg.47]

Example 37 Estimate the Diffusivity of Benzene Vapor Diffusing... [Pg.49]

Example 37 Estimate the diffusivity of benzene vapor diffusing into air at 30°C and 96.5 kPa total pressure. [Pg.414]

Azobenzene [103-33-3] M 182.2, m 68", pK 2.48. Ordinary azobenzene is nearly all in the transform. It is partly converted into the cw-form on exposure to light [for isolation see Hartley J Chem Soc 633 1938, and for spectra of cis- and /ran5-azobenzenes, see Winkel and Siebert Chem Ber 74B 6707947]. trans-Azobenzene is obtained by chromatography on alumina using 1 4 benzene/heptane or pet ether, and crystd from EtOH (after refluxing for several hours) or hexane. All operations should be carried out in diffuse red light or in the dark. [Pg.117]

Benzene m air (porous polymer diffusion samplers, thermal desoiption and gas chromatography) Quartz in respirable airborne dusts (X-ray diffraction)... [Pg.581]

F = Function of the molecular volume of the solute. Correlations for this parameter are given in Figure 7 as a function of the parameter (j), which is an empirical constant that depends on the solvent characteristics. As points of reference for water, (j) = 1.0 for methanol, (j) = 0.82 and for benzene, (j) = 0.70. The two-film theory is convenient for describing gas-liquid mass transfer where the pollutant solute is considered to be continuously diffusing through the gas and liquid films. [Pg.257]

Note. Both the rearrangement In t-ButanoI) and the double bond isomerization of (114) (In Benzene) are quenched in a diffusion-controlled process by suitable triplet acceptors e.g., naphthalene or 2,5-dimethylhexa-2,4-diene). The rearrangement (114) (118) -I- (120) is also observed on irradiation in... [Pg.322]

The non-bonded interaction energy, the van-der-Waals and electrostatic part of the interaction Hamiltonian are best determined by parametrizing a molecular liquid that contains the same chemical groups as the polymers against the experimentally measured thermodynamical and dynamical data, e.g., enthalpy of vaporization, diffusion coefficient, or viscosity. The parameters can then be transferred to polymers, as was done in our case, for instance in polystyrene (from benzene) [19] or poly (vinyl alcohol) (from ethanol) [20,21]. [Pg.487]

FIQ. 3 Diffusion coefficient of benzene molecules in benzene-polystyrene mixtures normalized by the diffusion coefficient of neat benzene molecular dynamics results, NMR measurements and prediction by the Mackie-Meares model [26]. [Pg.491]

Provided that the catalyst is active enough, there will be sufficient conversion of the pollutant gases through the pellet bed and the screen bed. The Sherwood number of CO is almost equal to the Nusselt number, and 2.6% of the inlet CO will not be converted in the monolith. The diffusion coefficient of benzene is somewhat smaller, and 10% of the inlet benzene is not converted in the monolith, no matter how active is the catalyst. This mass transfer limitation can be easily avoided by forcing the streams to change flow direction at the cost of some increased pressure drop. These calculations are comparable with the data in Fig. 22, taken from Carlson 112). [Pg.104]

The sum of all results is consistent with the formation of both the aryl cation and the aryl radical in the aqueous acid system without copper, and with the dominance of the aryl radical in the presence of copper. The product ratios are also qualitatively consistent with the hypothesis that the reactivity of aryl cations with nucleophiles is close to that of a diffusion-controlled process (see Sec. 8.3), and that aryl radicals have arylation rate constants that are about two orders of magnitude smaller than that for diffusion control (0.4-1.7 X 107 m-1s-1 Kryger et al., 1977 Scaiano and Stewart, 1983). Due to the relatively low yields of these dediazoniations in the pentyl nitrite/benzene systems, no conclusions should be drawn from the results. [Pg.267]

The lack of a substrate isotope effect suggests very extensive internal return and is readily explained in terms of the fact that conversion of the hydrocarbon to the anion would require very little structural reorganisation. Since koba = k 1k 2/(kLl+k 2) and k 2 is deduced as > k2, then kobs = Kk 2, the product of the equilibrium constant and the rate of diffusion away of a solvent molecule, neither of the steps having an appreciable isotope effect. If the diffusion rates are the same for reactions of each compound then the derived logarithms of partial rate factors (above) become pAT differences between benzene and fluorobenzene hydrogens in methanol. However, since the logarithms of the partial rate factors were similar to those obtained with lithium cyclohexylamide, a Bronsted cor-... [Pg.275]

A simple rectifying column consists of a tube arranged vertically and supplied at the bottom with a mixture of benzene and toluene as vapour. At the top a condenser returns some of the product as a reflux which flows in a thin film down the inner wall of the tube. The tube is insulated and heat losses can be neglected. At one point in the column the vapour contains 70 mol% benzene and the adjacent liquid reflux contains 59 moi% benzene. The temperature at this point is 365 K. Assuming the diffusional resistance to vaponr transfer to be equivalent to the diffusional resistance of a stagnant vapour layer 0.2 mm thick, calculate the rate of interchange of benzene and toluene between vapour and liquid. The molar latent heats of the two materials can be taken as equal. The vapour pressure of toluene at 365 K is 54.0 kN/nt2 and the diffusivity of the vapours is 0.051 cm2/s... [Pg.852]

Two solutes were used to study diffusion in liquids, methylbenzene, which is a small molecule that can be approximated as a sphere, and a liquid crystal that is long and rodlike. The two solutes were found to move and rotate in all directions to the same extent in benzene. In a liquid crystal solvent the methylbenzene again moved and rotated to the same extent in all directions, but the liquid crystal solute moved much more rapidly along the long axis of the molecule than it... [Pg.331]

It should be mentioned that the predicted curve at highest benzene level in Figure 13 agrees with classical kinetics (no diffusion-control). It is not clear therefore why measured data at even higher benzene concentrations do not agree with classical kinetics. There may be some subtle chemical interactions at these high solvent levels. Duerksen(lT) fomd similar effects with styrene polymerization in benzene and had to correct kp for solvent. [Pg.58]

Radical diffusion processes were shown to be involved in the case of CH3CpMn(CO)3 irradiated in benzene solution. Furthermore, with the same target compound irradiated with various concentrations of iso-octane the yields of CH3Mn(CO)s was found to increase, presumably as result of the increased availability of methyl radicals. The presence of Fe(CO)s, far from increasing the yield by providing more carbonyls, caused the yield of CH3Mn(CO)s to drop to zero, likely by radical competition reactions involving the methyls. [Pg.81]


See other pages where Diffusivity benzene is mentioned: [Pg.219]    [Pg.41]    [Pg.675]    [Pg.675]    [Pg.655]    [Pg.219]    [Pg.41]    [Pg.675]    [Pg.675]    [Pg.655]    [Pg.481]    [Pg.588]    [Pg.945]    [Pg.48]    [Pg.542]    [Pg.414]    [Pg.152]    [Pg.539]    [Pg.240]    [Pg.574]    [Pg.205]    [Pg.491]    [Pg.297]    [Pg.187]    [Pg.140]    [Pg.279]    [Pg.134]    [Pg.630]    [Pg.202]    [Pg.99]    [Pg.321]    [Pg.869]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Benzene, diffusion

© 2024 chempedia.info