Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Translocation diffusion

Passive diffusion Translocation driven by kinetic energy down electrochemical gradients. [Pg.62]

M. Postma, P.J.M. Van Haastert, A diffusion-translocation model for gradient sensing by chemotactic cells, Biophys. J. 2001, 81, 1314-1323. [Pg.1079]

Hanson and Eberhardt (1971) found the models of the cation binding and diffusive translocation developed by Tuominen to be applicable to their observations in natural lichen communities, when they tried to simulate behavior of Cs in the lichen-caribou-Eskimo food chains. They postulated a very interesting seasonal cycle of Cs concentration in lichens as described in more detail in the subsection on the radioactive nuclides. The radionuclide cycling within natural arctic lichen communities seems to be a more dynamic process than previously noted. [Pg.219]

FIGURE 22.17 The R. viridis reaction center is coupled to the cytochrome h/Cl complex through the quinone pool (Q). Quinone molecules are photore-duced at the reaction center Qb site (2 e [2 hv] per Q reduced) and then diffuse to the cytochrome h/ci complex, where they are reoxidized. Note that e flow from cytochrome h/ci back to the reaction center occurs via the periplasmic protein cytochrome co- Note also that 3 to 4 are translocated into the periplasmic space for each Q molecule oxidized at cytochrome h/ci. The resultant proton-motive force drives ATP synthesis by the bacterial FiFo ATP synthase. (Adapted from Deisenhofer, and Michel, H., 1989. The photosynthetic reaction center from the purple bac-terinm Rhod.opseud.omoaas viridis. Science 245 1463.)... [Pg.724]

Figure 7. Mechanism of the proton-translocating ubiquinol cytochrome c reductase (complex III) Q cycle. There is a potential difference of up to 150 mV across the hydrophobic core of this complex (potential barrier represented by the vertical broken line). Cytochromes hour and b N are heme groups on the same peptide subunits of complex III which can transfer electrons across the hydrophobic core. The movement of two electrons provides the driving force to transfer two protons from the matrix to the cytosol. Diffusion of UQ and UQHj, which are uncharged, in the hydrophobic core, and lipid bilayer of the inner membrane is not influenced by the membrane potential (see Nicholls and Ferguson, 1992). Figure 7. Mechanism of the proton-translocating ubiquinol cytochrome c reductase (complex III) Q cycle. There is a potential difference of up to 150 mV across the hydrophobic core of this complex (potential barrier represented by the vertical broken line). Cytochromes hour and b N are heme groups on the same peptide subunits of complex III which can transfer electrons across the hydrophobic core. The movement of two electrons provides the driving force to transfer two protons from the matrix to the cytosol. Diffusion of UQ and UQHj, which are uncharged, in the hydrophobic core, and lipid bilayer of the inner membrane is not influenced by the membrane potential (see Nicholls and Ferguson, 1992).
These macromolecules include histones, ribosomal proteins and ribosomal subunits, ttansctiption factors, and mRNA molecules. The transport is bidirectional and occurs through the nucleat pote complexes (NPCs). These are complex stmctures with a mass approximately 30 times that of a ribosome and are composed of about 100 diffetent proteins. The diameter of an NPC is approximately 9 run but can increase up to ap-ptoximately 28 nm. Molecules smaller than about 40 kDa can pass through the channel of the NPC by diffusion, but special translocation mechanisms exist fot latget molecules. These mechanisms are under intensive investigation, but some important features have already emerged. [Pg.501]

Unphosphorylated functioning according to Fig. 5 catalyzes facilitated diffusion of mannitol across the membrane. The same process has been reported for purified II reconstituted in proteoliposomes [70]. The relevance of this activity in terms of transport of mannitol into the bacterial cell is probably low, but it may have important implications for the mechanism by which E-IIs catalyze vectorial phosphorylation. It would indicate that the transmembrane C domain of Il is a mannitol translocating unit which is somehow coupled to the kinase activity of the cytoplasmic domains. We propose that the inwardly oriented binding site which is in contact with the internal water phase (Ecyt Mtl, see Fig. 5) is the site from where mannitol is phosphorylated when transport is coupled to phosphorylation. Meehan-... [Pg.150]

Let us consider another situation where a force (or forces) is not compensated on a time average. Then the particles upon which the force is exerted become transported in the medium. This translocation phenomenon changes with time. Particle transport, of course, also occurs under equilibrium conditions in homogeneous media. Self-diffusion is a process that can be observed and its velocity can be measured, provided that a gradient of isotopically labelled species is formed in the system at constant composition. [Pg.90]

Models of lipid bilayers have been employed widely to investigate diffusion properties across membranes through assisted and non-assisted mechanisms. Simple monovalent ions, e.g., Na+, K+, and Cl, have been shown to play a crucial role in intercellular communication. In order to enter the cell, the ion must preliminarily permeate the membrane that acts as an impervious wall towards the cytoplasm. Passive transport of Na+ and Cl ions across membranes has been investigated using a model lipid bilayer that undergoes severe deformations upon translocation of the ions across the aqueous interface [126]. This process is accompanied by thinning defects in the membrane and the formation of water fingers that ensure appropriate hydration of the ion as it permeates the hydrophobic environment. [Pg.478]

In Fig. 9.4, the results are shown of an experiment using a double (annexinA4-EYFP+ annexinA4-mCherry) transfected cell immediately after addition of the calcium ionophore ionomycin (top) and 5 min after application of ionomycin (bottom). Clearly visible is the diffuse localization of annexin A4 before relocation and the more structured localization (into membrane ruffles and filopodia) after relocation. More importantly, the EYFP fluorescence lifetime is quenched from 2.9 ns before translocation to... [Pg.417]

Cell membranes or synthetic lipid vesicles with normal low permeability to water will, if reconstituted with AQP1, absorb water, swell and burst upon exposure to hypo-osmotic solutions. The water permeability of membranes containing AQP 1 can be about 100 times greater than that of membranes without aquaporins. The water permeability conferred by AQP1 (about 3 billion water molecules per subunit per second) is reversibly inhibited by Hg2+, exhibits low activation energy and is not accompanied by ionic currents or translocation of any other solutes, ions or protons. Thus, the movement of water through aquaporins is an example of facilitated diffusion, in this case driven by osmotic gradients. [Pg.89]

Many experimental variations are possible when performing uptake studies [246]. In a simple experiment for which the cells are initially free of internalised compound, the initial rates of transmembrane transport may be determined as a function of the bulk solution concentrations. In such an experiment, hydrophilic compounds, such as sugars, amino acids, nucleotides, organic bases and trace metals including Cd, Cu, Fe, Mn, and Zn [260-262] have been observed to follow a saturable uptake kinetics that is consistent with a transport process mediated by the formation and translocation of a membrane imbedded complex (cf. Pb uptake, Figure 6 Mn uptake, Figure 7a). Saturable kinetics is in contrast to what would be expected for a simple diffusion-mediated process (Section 6.1.1). Note, however, that although such observations are consistent... [Pg.487]

Facilitated Diffusion. Temporary combination of the chemical with some form of carrier occurs in the gut wall, facilitating the transfer of the toxicant across the membranes. This process is also dependent on the concentration gradient across the membrane, and there is no energy utilization in making the translocation. In some intoxications, the carrier may become saturated, making this the rate-limiting step in the absorption process. [Pg.456]

C. These freeze-dried sections were dry mounted on microscope slides which had been precoated with either Kodak NTB-3 or NTB-10 emulsion. Other techniques which thawed the frozen section, embedded the tissue in paraffin or dipped the section in liquid emulsion were demonstrated to translocate diffusible compounds. Many other similar attempts have been and are currently being made to localize diffusible compounds by autoradiography at the electron microscope level. [Pg.731]


See other pages where Translocation diffusion is mentioned: [Pg.724]    [Pg.620]    [Pg.1105]    [Pg.247]    [Pg.8]    [Pg.143]    [Pg.456]    [Pg.173]    [Pg.151]    [Pg.159]    [Pg.3]    [Pg.41]    [Pg.277]    [Pg.171]    [Pg.173]    [Pg.183]    [Pg.121]    [Pg.246]    [Pg.477]    [Pg.170]    [Pg.313]    [Pg.319]    [Pg.440]    [Pg.465]    [Pg.280]    [Pg.280]    [Pg.281]    [Pg.286]    [Pg.287]    [Pg.314]    [Pg.159]    [Pg.368]    [Pg.263]    [Pg.267]    [Pg.423]    [Pg.234]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Translocated

© 2024 chempedia.info