Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion Reynolds number

For hquid systems v is approximately independent of velocity, so that a plot of JT versus v provides a convenient method of determining both the axial dispersion and mass transfer resistance. For vapor-phase systems at low Reynolds numbers is approximately constant since dispersion is determined mainly by molecular diffusion. It is therefore more convenient to plot H./v versus 1/, which yields as the slope and the mass transfer resistance as the intercept. Examples of such plots are shown in Figure 16. [Pg.265]

Using this simplified model, CP simulations can be performed easily as a function of solution and such operating variables as pressure, temperature, and flow rate, usiag software packages such as Mathcad. Solution of the CP equation (eq. 8) along with the solution—diffusion transport equations (eqs. 5 and 6) allow the prediction of CP, rejection, and permeate flux as a function of the Reynolds number, Ke. To faciUtate these calculations, the foUowiag data and correlations can be used (/) for mass-transfer correlation, the Sherwood number, Sb, is defined as Sh = 0.04 S c , where Sc is the Schmidt... [Pg.148]

A = 4.05 X lO " cm/(s-kPa)(4.1 X 10 cm/(s-atm)) and = 1.3 x 10 cm/s (4)//= 1 mPa-s(=cP), NaCl diffusivity in water = 1.6 x 10 cm /s, and solution density = 1 g/cm . Figure 4 shows typical results of this type of simulation of salt water permeation through an RO membrane. Increasing the Reynolds number in Figure 4a decreases the effect of concentration polarization. The effect of feed flow rate on NaCl rejection is shown in Figure 4b. Because the intrinsic rejection, R = 1 — Cp / defined in terms of the wall concentration, theoretically R should be independent of the Reynolds... [Pg.148]

Turbulent Diffusion FDmes. Laminar diffusion flames become turbulent with increasing Reynolds number (1,2). Some of the parameters that are affected by turbulence include flame speed, minimum ignition energy, flame stabilization, and rates of pollutant formation. Changes in flame stmcture are beHeved to be controlled entirely by fluid mechanics and physical transport processes (1,2,9). [Pg.519]

Consider the case of the simple Bunsen burner. As the tube diameter decreases, at a critical flow velocity and at a Reynolds number of about 2000, flame height no longer depends on the jet diameter and the relationship between flame height and volumetric flow ceases to exist (2). Some of the characteristics of diffusion flames are illustrated in Eigure 5. [Pg.519]

The existing data indicate that fcja is proportional to the square root of the solute-diffusion coefficient, and since the interfacial area a does not depend on Dl, it follows that /cl is proportional to Dl. An analysis of the design variables involved indicates that /cl should be proportional to Nsc when the Reynolds number is held constant. [Pg.615]

For turbines at Reynolds numbers less than 100, toroidal stagnant zones exist above and below the turbine periphery. Interchange of hq-uid between these regions and the rest of the vessel is principally by molecular diffusion. [Pg.1630]

FIG. 22-29 Qualitative effects of Reynolds number and applied-electric-field strength on the filtration permeate flux J. Dashed lines indicate large particles (radial migration dominates) solid lines, small particles (particle diffusion dominates). [Pg.2010]

When the two liquid phases are in relative motion, the mass transfer coefficients in eidrer phase must be related to die dynamical properties of the liquids. The boundary layer thicknesses are related to the Reynolds number, and the diffusive Uansfer to the Schmidt number. Another complication is that such a boundaty cannot in many circumstances be regarded as a simple planar interface, but eddies of material are U ansported to the interface from the bulk of each liquid which change the concenuation profile normal to the interface. In the simple isothermal model there is no need to take account of this fact, but in most indusuial chcumstances the two liquids are not in an isothermal system, but in one in which there is a temperature gradient. The simple stationary mass U ansfer model must therefore be replaced by an eddy mass U ansfer which takes account of this surface replenishment. [Pg.326]

Figure 3.2.1 illustrates the mixing in packed beds (Wilhelm 1962). As Reynolds number approaches the industrial range Rep > 100, the Peclet numbers approach a constant value. This means that dispersion is influenced by turbulence and the effect of molecular diffusion is negligible. [Pg.59]

Peclet number independent of Reynolds number also means that turbulent diffusion or dispersion is directly proportional to the fluid velocity. In general, reactors that are simple in construction, (tubular reactors and adiabatic reactors) approach their ideal condition much better in commercial size then on laboratory scale. On small scale and corresponding low flows, they are handicapped by significant temperature and concentration gradients that are not even well defined. In contrast, recycle reactors and CSTRs come much closer to their ideal state in laboratory sizes than in large equipment. The energy requirement for recycle reaci ors grows with the square of the volume. This limits increases in size or applicable recycle ratios. [Pg.59]

The relationship between adsorption capacity and surface area under conditions of optimum pore sizes is concentration dependent. It is very important that any evaluation of adsorption capacity be performed under actual concentration conditions. The dimensions and shape of particles affect both the pressure drop through the adsorbent bed and the rate of diffusion into the particles. Pressure drop is lowest when the adsorbent particles are spherical and uniform in size. External mass transfer increases inversely with d (where, d is particle diameter), and the internal adsorption rate varies inversely with d Pressure drop varies with the Reynolds number, and is roughly proportional to the gas velocity through the bed, and inversely proportional to the particle diameter. Assuming all other parameters being constant, adsorbent beds comprised of small particles tend to provide higher adsorption efficiencies, but at the sacrifice of higher pressure drop. This means that sharper and smaller mass-transfer zones will be achieved. [Pg.291]

The distribution of tracer molecule residence times in the reactor is the result of molecular diffusion and turbulent mixing if tlie Reynolds number exceeds a critical value. Additionally, a non-uniform velocity profile causes different portions of the tracer to move at different rates, and this results in a spreading of the measured response at the reactor outlet. The dispersion coefficient D (m /sec) represents this result in the tracer cloud. Therefore, a large D indicates a rapid spreading of the tracer curve, a small D indicates slow spreading, and D = 0 means no spreading (hence, plug flow). [Pg.725]

The problems that arise when experiments are carried out in a greatly reduced scale can be overcome if the Reynolds number is high and the flow pattern is governed mainly by fully developed turbulence. It is possible to ignore the Reynolds number, the Schmidt number, and the Prandtl number because the structure of the turbulence and the flow pattern at a sufficiently high level of velocity will be similar at different supply velocities and therefore independent of the Reynolds number. The transport of thermal energy and mass by turbulent eddies will likewise dominate the molecular diffusion and will therefore also be independent of the Prandtl number and the Schmidt number. [Pg.1183]

Orifice flames can be cliaracterized as either prenii.xed or diffusion flames. In a prenii.xed flame, tlie air for combustion is already nii.xed witli the fuel gas before it leaves the orifice or pipe. In a diffusion flame, fuel e.xiting tlie orifice is piu c and the air needed for combustion diffuses into tlie fuel gas from the surroundings. Orifice flames can also be cliaracterized by tlie fame Reynolds number. Tlie flame lengtli of a diffusion flame can be calculated by Jost s equation. ... [Pg.210]

In addition to momentum, both heat and mass can be transferred either by molecular diffusion alone or by molecular diffusion combined with eddy diffusion. Because the effects of eddy diffusion are generally far greater than those of the molecular diffusion, the main resistance to transfer will lie in the regions where only molecular diffusion is occurring. Thus the main resistance to the flow of heat or mass to a surface lies within the laminar sub-layer. It is shown in Chapter 11 that the thickness of the laminar sub-layer is almost inversely proportional to the Reynolds number for fully developed turbulent flow in a pipe. Thus the heat and mass transfer coefficients are much higher at high Reynolds numbers. [Pg.695]

These observations are consistent with the proposed mechanism of the reaction being diffusion controlled in the laminar flow regime. The mass transport is aided by the velocity gradient and thus the reaction rate increases as the Reynolds number is increased. [Pg.133]

The parameter D is known as the axial dispersion coefficient, and the dimensionless number, Pe = uL/D, is the axial Peclet number. It is different than the Peclet number used in Section 9.1. Also, recall that the tube diameter is denoted by df. At high Reynolds numbers, D depends solely on fluctuating velocities in the axial direction. These fluctuating axial velocities cause mixing by a random process that is conceptually similar to molecular diffusion, except that the fluid elements being mixed are much larger than molecules. The same value for D is used for each component in a multicomponent system. [Pg.329]

At lower Reynolds numbers, the axial velocity profile will not be flat and it might seem that another correction must be added to Equation (9.14). It turns out, however, that Equation (9.14) remains a good model for real turbulent reactors (and even some laminar ones) given suitable values for D. The model lumps the combined effects of fluctuating velocity components, nonflat velocity profiles, and molecular diffusion into the single parameter D. [Pg.329]

At a close level of scrutiny, real systems behave differently than predicted by the axial dispersion model but the model is useful for many purposes. Values for Pe can be determined experimentally using transient experiments with nonreac-tive tracers. See Chapter 15. A correlation for D that combines experimental and theoretical results is shown in Figure 9.6. The dimensionless number, udt/D, depends on the Reynolds number and on molecular diffusivity as measured by the Schmidt number, Sc = but the dependence on Sc is weak for... [Pg.329]

In the so-called "wrinkled flame regime," the "turbulent flame speed" was expected to be controlled by a characteristic value of the turbulent fluctuations of velocity u rather than by chemistry and molecular diffusivities. Shchelkin [2] was the first to propose the law St/Sl= (1 + A u /Si) ), where A is a universal constant and Sl the laminar flame velocity of propagation. For the other limiting regime, called "distributed combustion," Summerfield [4] inferred that if the turbulent diffusivity simply replaces the molecular one, then the turbulent flame speed is proportional to the laminar flame speed but multiplied by the square root of the turbulence Reynolds number Re. ... [Pg.138]

Clemens, N.T., Paul, P.H., and Mungal, M.G., The structure of OH fields in high Reynolds number turbulent jet diffusion flames. Combust. Sci, Technol., 129,165,1997. [Pg.162]

Fluid flow and reaction engineering problems represent a rich spectrum of examples of multiple and disparate scales. In chemical kinetics such problems involve high values of Thiele modulus (diffusion-reaction problems), Damkohler and Peclet numbers (diffusion-convection-reaction problems). For fluid flow problems a large value of the Mach number, which represents the ratio of flow velocity to the speed of sound, indicates the possibility of shock waves a large value of the Reynolds number causes boundary layers to be formed near solid walls and a large value of the Prandtl number gives rise to thermal boundary layers. Evidently, the inherently disparate scales for fluid flow, heat transfer and chemical reaction are responsible for the presence of thin regions or "fronts in the solution. [Pg.376]

The Reynolds number Re = vl/v, where v and l are the characteristic velocity and length for the problem, respectively, gauges the relative importance of inertial and viscous forces in the system. Insight into the nature of the Reynolds number for a spherical particle with radius l in a flow with velocity v may be obtained by expressing it in terms of the Stokes time, t5 = i/v, and the kinematic time, xv = l2/v. We have Re = xv/xs. The Stokes time measures the time it takes a particle to move a distance equal to its radius while the kinematic time measures the time it takes momentum to diffuse over... [Pg.113]

The Peclet number Pe = v /Dc, where Dc is the diffusion coefficient of a solute particle in the fluid, measures the ratio of convective transport to diffusive transport. The diffusion time Tp = 2/D< is the time it takes a particle with characteristic length to diffuse a distance comparable to its size. We may then write the Peclet number as Pe = xD/xs, where xv is again the Stokes time. For Pe > 1 the particle will move convectively over distances greater than its size. The Peclet number can also be written Pe = Re(v/Dc), so in MPC simulations the extent to which this number can be tuned depends on the Reynolds number and the ratio of the kinematic viscosity and the particle diffusion coefficient. [Pg.114]

In convective diffusion to a rotating disk, the characteristic velocity V0 is given by the product of the disk radius r, as a characteristic dimension of the system, and the radial velocity co, so that the Reynolds number is given by the equation... [Pg.154]


See other pages where Diffusion Reynolds number is mentioned: [Pg.89]    [Pg.510]    [Pg.524]    [Pg.733]    [Pg.1039]    [Pg.1065]    [Pg.397]    [Pg.152]    [Pg.101]    [Pg.114]    [Pg.305]    [Pg.318]    [Pg.320]    [Pg.164]    [Pg.641]    [Pg.33]    [Pg.185]    [Pg.202]    [Pg.208]    [Pg.335]    [Pg.514]    [Pg.552]   
See also in sourсe #XX -- [ Pg.12 , Pg.16 , Pg.19 , Pg.30 , Pg.45 , Pg.46 , Pg.47 , Pg.49 , Pg.50 , Pg.51 , Pg.62 , Pg.64 , Pg.65 , Pg.67 , Pg.75 ]




SEARCH



Convective diffusion high Reynolds numbers

Diffusion number

Reynold

Reynolds number

© 2024 chempedia.info