Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion forced convection

Buoyancy forces Inertia forces Viscous forces Viscous forces Momentum diffusivity(kinematic viscosity) Thermal diffusivity Forced convection heat transfer Conduction heat transfer... [Pg.412]

Reactant molecule Diffusion Diffusion Diffusion Forced convection... [Pg.68]

These three terms represent contributions to the flux from migration, diffusion, and convection, respectively. The bulk fluid velocity is determined from the equations of motion. Equation 25, with the convection term neglected, is frequently referred to as the Nemst-Planck equation. In systems containing charged species, ions experience a force from the electric field. This effect is called migration. The charge number of the ion is Eis Faraday s constant, is the ionic mobiUty, and O is the electric potential. The ionic mobiUty and the diffusion coefficient are related ... [Pg.65]

An important mixing operation involves bringing different molecular species together to obtain a chemical reaction. The components may be miscible liquids, immiscible liquids, solid particles and a liquid, a gas and a liquid, a gas and solid particles, or two gases. In some cases, temperature differences exist between an equipment surface and the bulk fluid, or between the suspended particles and the continuous phase fluid. The same mechanisms that enhance mass transfer by reducing the film thickness are used to promote heat transfer by increasing the temperature gradient in the film. These mechanisms are bulk flow, eddy diffusion, and molecular diffusion. The performance of equipment in which heat transfer occurs is expressed in terms of forced convective heat transfer coefficients. [Pg.553]

If there is an external force acting in the same direction on solute molecules, the velocity of these molecules is vz and the resulting flux is cvz. Therefore, the total flux, nz, due to both diffusion and convection is... [Pg.44]

Fig. 4. Migration contribution to the limiting current in acidified CuS04 solutions, expressed as the ratio of limiting current (iL) to limiting diffusion current (i ) r = h,so4/(( h,so, + cCuS(>4). "Sulfate refers to complete dissociation of HS04 ions. "bisulfate" to undissociated HS04 ions. Forced convection" refers to steady-state laminar boundary layers, as at a rotating disk or flat plate free convection refers to laminar free convection at a vertical electrode penetration to unsteady-state diffusion in a stagnant solution. [F rom Selman (S8).]... Fig. 4. Migration contribution to the limiting current in acidified CuS04 solutions, expressed as the ratio of limiting current (iL) to limiting diffusion current (i ) r = h,so4/(( h,so, + cCuS(>4). "Sulfate refers to complete dissociation of HS04 ions. "bisulfate" to undissociated HS04 ions. Forced convection" refers to steady-state laminar boundary layers, as at a rotating disk or flat plate free convection refers to laminar free convection at a vertical electrode penetration to unsteady-state diffusion in a stagnant solution. [F rom Selman (S8).]...
The diffusivities thus obtained are necessarily effective diffusivities since (1) they reflect a migration contribution that is not always negligible and (2) they contain the effect of variable properties in the diffusion layer that are neglected in the well-known solutions to constant-property equations. It has been shown, however, that the limiting current at a rotating disk in the laminar range is still proportional to the square root of the rotation rate if the variation of physical properties in the diffusion layer is accounted for (D3e, H8). Similar invariant relationships hold for the laminar diffusion layer at a flat plate in forced convection (D4), in which case the mass-transfer rate is proportional to the square root of velocity, and in free convection at a vertical plate (Dl), where it is proportional to the three-fourths power of plate height. [Pg.233]

The effective diffusivities determined from limiting-current measurements appear at first applicable only to the particular flow cell in which they were measured. However, it can be argued plausibly that, for example, rotating-disk effective diffusivities are also applicable to laminar forced-convection mass transfer in general, provided the same bulk electrolyte composition is used (H8). Furthermore, the effective diffusivities characteristic for laminar free convection at vertical or inclined electrodes are presumably not significantly different from the forced-convection diffusivities. [Pg.234]

In free-convection mass transfer at electrodes, as well as in forced convection, the concentration (diffusion) boundary layer (5d extends only over a very small part of the hydrodynamic boundary layer <5h. In laminar free convection, the ratio of the thicknesses is... [Pg.258]

Tobias and Hickman (T2), the only investigators to date to study combined free and forced convection in horizontal channel flow, found a remarkably sharp separation between forced- and free-convection dominated mass transfer. In forced convection, the critical Grashof number, based on the diffusion layer thickness, is... [Pg.268]

The dissolution rate of a solid from a rotating disc is governed by the controlled hydrodynamics of the system, and it has been treated theoretically by Levich [104]. This theory considers only forced convection due to rotation and ignores natural convection, which may occur at low speeds of rotation. Figure 16 shows the solvent flow held near the surface of the rotating disc. The apparent thickness, h, of the diffusion layer next to the surface of the disc is given by... [Pg.358]

After the electrode reaction starts at a potential close to E°, the concentrations of both O and R in a thin layer of solution next to the electrode become different from those in the bulk, cQ and cR. This layer is known as the diffusion layer. Beyond the diffusion layer, the solution is maintained uniform by natural or forced convection. When the reaction continues, the diffusion layer s thickness, /, increases with time until it reaches a steady-state value. This behaviour is also known as the relaxation process and accounts for many features of a voltammogram. Besides the electrode potential, equations (A.3) and (A.4) show that the electrode current output is proportional to the concentration gradient dcourfa /dx or dcRrface/dx. If the concentration distribution in the diffusion layer is almost linear, which is true under a steady state, these gradients can be qualitatively approximated by equation (A.5). [Pg.85]

Cooper A.R. and Kingery W.D. (1963) Dissolution in ceramic systems, 1 molecular diffusion, natural convection, and forced convection studies of sapphire dissolution in calcium aluminum silicate. /. Am. Ceram. Soc. 47, 37-43. [Pg.598]

Water from the bulk of the melt is transported, by diffusion and forced convection, in a rate-controlling step to the electrode surface (this accounts for the proportionality of the limiting current to water concentration) at the electrode interface water... [Pg.231]

In what follows, the preceding evaluation procedure is employed in a somewhat different mode, the main objective now being to obtain expressions for the heat or mass transfer coefficient in complex situations on the basis of information available for some simpler asymptotic cases. The order-of-magnitude procedure replaces the convective diffusion equation by an algebraic equation whose coefficients are determined from exact solutions available in simpler limiting cases [13,14]. Various cases involving free convection, forced convection, mixed convection, diffusion with reaction, convective diffusion with reaction, turbulent mass transfer with chemical reaction, and unsteady heat transfer are examined to demonstrate the usefulness of this simple approach. There are, of course, cases, such as the one treated earlier, in which the constants cannot be obtained because exact solutions are not available even for simpler limiting cases. In such cases, the procedure is still useful to correlate experimental data if the constants are determined on the basis of those data. [Pg.20]


See other pages where Diffusion forced convection is mentioned: [Pg.254]    [Pg.174]    [Pg.254]    [Pg.174]    [Pg.1933]    [Pg.147]    [Pg.18]    [Pg.100]    [Pg.426]    [Pg.1201]    [Pg.1203]    [Pg.10]    [Pg.203]    [Pg.18]    [Pg.32]    [Pg.76]    [Pg.232]    [Pg.232]    [Pg.251]    [Pg.268]    [Pg.15]    [Pg.1]    [Pg.21]    [Pg.21]    [Pg.245]    [Pg.125]    [Pg.454]    [Pg.203]    [Pg.89]    [Pg.263]    [Pg.280]    [Pg.360]    [Pg.229]    [Pg.232]    [Pg.273]    [Pg.147]    [Pg.378]   
See also in sourсe #XX -- [ Pg.763 ]




SEARCH



Convective diffusion

Diffusion, forced

Force, diffusion

Forced convection

© 2024 chempedia.info