Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Difference Raman spectroscopy

The novel technique of difference Raman spectroscopy has been used to determine the position of binding of MeHg+ to uridine and cytidine.253 The binding at pH 7 is such that the uridine interaction is stronger than the cytidine the most likely coordination site is N3. [Pg.466]

Fig. 3.8 Rotating sample cell used for difference Raman spectroscopy 7, motor 2, motor block 3, side parts 4, motor axis 5, set screw 6, kinematic mount 7, x-y precision ball glider 8, adjustment screw 9, divided liquid cell for difference Raman spectroscopy 70, axis for trigger wheel 77, trigger wheel 72, trigger hole 13, bar 14, optoelectronic array consisting of a photodiode and transistor [320]... Fig. 3.8 Rotating sample cell used for difference Raman spectroscopy 7, motor 2, motor block 3, side parts 4, motor axis 5, set screw 6, kinematic mount 7, x-y precision ball glider 8, adjustment screw 9, divided liquid cell for difference Raman spectroscopy 70, axis for trigger wheel 77, trigger wheel 72, trigger hole 13, bar 14, optoelectronic array consisting of a photodiode and transistor [320]...
Fig.8.5. Rotating sample cell used for difference Raman spectroscopy [8.25]... [Pg.497]

Wliat does one actually observe in the experunental spectrum, when the levels are characterized by the set of quantum numbers n. Mj ) for the nonnal modes The most obvious spectral observation is simply the set of energies of the levels another important observable quantity is the intensities. The latter depend very sensitively on the type of probe of the molecule used to obtain the spectmm for example, the intensities in absorption spectroscopy are in general far different from those in Raman spectroscopy. From now on we will focus on the energy levels of the spectmm, although the intensities most certainly carry much additional infonnation about the molecule, and are extremely interesting from the point of view of theoretical dynamics. [Pg.63]

Infrared and Raman spectroscopy each probe vibrational motion, but respond to a different manifestation of it. Infrared spectroscopy is sensitive to a change in the dipole moment as a function of the vibrational motion, whereas Raman spectroscopy probes the change in polarizability as the molecule undergoes vibrations. Resonance Raman spectroscopy also couples to excited electronic states, and can yield fiirtlier infomiation regarding the identity of the vibration. Raman and IR spectroscopy are often complementary, both in the type of systems tliat can be studied, as well as the infomiation obtained. [Pg.1150]

Both infrared and Raman spectroscopy provide infonnation on the vibrational motion of molecules. The teclmiques employed differ, but the underlying molecular motion is the same. A qualitative description of IR and Raman spectroscopies is first presented. Then a slightly more rigorous development will be described. For both IR and Raman spectroscopy, the fiindamental interaction is between a dipole moment and an electromagnetic field. Ultimately, the two... [Pg.1151]

An interesting phenomenon called the noncoincidence effect appears in the Raman spectroscopies. This is seen when a given Raman band shows a peak position and a bandwidth that differs (slightly) with the... [Pg.1195]

Figure Bl.22.6. Raman spectra in the C-H stretching region from 2-butanol (left frame) and 2-butanethiol (right), each either as bulk liquid (top traces) or adsorbed on a rough silver electrode surface (bottom). An analysis of the relative intensities of the different vibrational modes led to tire proposed adsorption structures depicted in the corresponding panels [53], This example illustrates the usefiilness of Raman spectroscopy for the detennination of adsorption geometries, but also points to its main limitation, namely the need to use rough silver surfaces to achieve adequate signal-to-noise levels. Figure Bl.22.6. Raman spectra in the C-H stretching region from 2-butanol (left frame) and 2-butanethiol (right), each either as bulk liquid (top traces) or adsorbed on a rough silver electrode surface (bottom). An analysis of the relative intensities of the different vibrational modes led to tire proposed adsorption structures depicted in the corresponding panels [53], This example illustrates the usefiilness of Raman spectroscopy for the detennination of adsorption geometries, but also points to its main limitation, namely the need to use rough silver surfaces to achieve adequate signal-to-noise levels.
Raman spectroscopy provides the easiest way of estimating the concentration of nitronium ions in different media ( 2.4.1). The concentration, determined by infra-red spectroscopy, of nitronium ions in nitric acid was increased markedly by the addition of sulphuric acid. ... [Pg.13]

The use of vibrational Raman spectroscopy in qualitative analysis has increased greatly since the introduction of lasers, which have replaced mercury arcs as monochromatic sources. Although a laser Raman spectrometer is more expensive than a typical infrared spectrometer used for qualitative analysis, it does have the advantage that low- and high-wavenumber vibrations can be observed with equal ease whereas in the infrared a different, far-infrared, spectrometer may be required for observations below about 400 cm. ... [Pg.159]

Stimulated Raman spectroscopy is experimentally different from normal Raman spectroscopy in that the scattering is observed in the forward direction, emerging from the sample in the same direction as that of the emerging exciting radiation, or at a very small angle to it. [Pg.365]

Different rules apply to Raman spectroscopy, so symmetric diatomic molecules do have Raman spectra (see Infrared technology and raman spectroscopy, RAMAN spectroscopy) (23,24). [Pg.197]

Physical Properties. Raman spectroscopy is an excellent tool for investigating stress and strain in many different materials (see Materlals reliability). Lattice strain distribution measurements in siUcon are a classic case. More recent examples of this include the characterization of thin films (56), and measurements of stress and relaxation in silicon—germanium layers (57). [Pg.214]

Instrumental Interface. Gc/fdr instmmentation has developed around two different types of interfacing. The most common is the on-the-fly or flow cell interface in which gc effluent is dkected into a gold-coated cell or light pipe where the sample is subjected to infrared radiation (see Infrared and raman spectroscopy). Infrared transparent windows, usually made of potassium bromide, are fastened to the ends of the flow cell and the radiation is then dkected to a detector having a very fast response-time. In this light pipe type of interface, infrared spectra are generated by ratioing reference scans obtained when only carrier gas is in the cell to sample scans when a gc peak appears. [Pg.402]

In this chapter, three methods for measuring the frequencies of the vibrations of chemical bonds between atoms in solids are discussed. Two of them, Fourier Transform Infrared Spectroscopy, FTIR, and Raman Spectroscopy, use infrared (IR) radiation as the probe. The third, High-Resolution Electron Enetgy-Loss Spectroscopy, HREELS, uses electron impact. The fourth technique. Nuclear Magnetic Resonance, NMR, is physically unrelated to the other three, involving transitions between different spin states of the atomic nucleus instead of bond vibrational states, but is included here because it provides somewhat similar information on the local bonding arrangement around an atom. [Pg.413]

Because the Raman cross-section of molecules is usually low, intense light sources and low-noise detectors must be used, and high sensitivities - as required for surface analysis - are difficult to achieve. Different approaches, singly and in combination, enable the detection of Raman spectroscopy bands from surfaces. [Pg.255]

In Raman spectroscopy the intensity of scattered radiation depends not only on the polarizability and concentration of the analyte molecules, but also on the optical properties of the sample and the adjustment of the instrument. Absolute Raman intensities are not, therefore, inherently a very accurate measure of concentration. These intensities are, of course, useful for quantification under well-defined experimental conditions and for well characterized samples otherwise relative intensities should be used instead. Raman bands of the major component, the solvent, or another component of known concentration can be used as internal standards. For isotropic phases, intensity ratios of Raman bands of the analyte and the reference compound depend linearly on the concentration ratio over a wide concentration range and are, therefore, very well-suited for quantification. Changes of temperature and the refractive index of the sample can, however, influence Raman intensities, and the band positions can be shifted by different solvation at higher concentrations or... [Pg.259]

Nitrophenyl groups covalently bonded to classy carbon and graphite surfaces have been detected and characterized by unenhanced Raman spectroscopy in combination with voltammetry and XPS [4.292]. Difference spectra from glassy carbon with and without nitrophenyl modification contained several Raman bands from the nitrophenyl group with a comparatively large signal-to-noise ratio (Fig. 4.58). Electrochemical modification of the adsorbed monolayer was observed spectrally, because this led to clear changes in the Raman spectrum. [Pg.260]


See other pages where Difference Raman spectroscopy is mentioned: [Pg.209]    [Pg.278]    [Pg.209]    [Pg.278]    [Pg.1146]    [Pg.1179]    [Pg.1185]    [Pg.1185]    [Pg.1188]    [Pg.1190]    [Pg.1201]    [Pg.1214]    [Pg.1264]    [Pg.1716]    [Pg.2749]    [Pg.2962]    [Pg.155]    [Pg.208]    [Pg.208]    [Pg.364]    [Pg.310]    [Pg.318]    [Pg.318]    [Pg.225]    [Pg.220]    [Pg.414]    [Pg.429]    [Pg.431]    [Pg.257]    [Pg.258]    [Pg.260]   
See also in sourсe #XX -- [ Pg.158 ]

See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Difference spectroscopy

© 2024 chempedia.info