Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes classes

A supplementary form of linear polymers is those of the diene class. In this case, the repeating unit with one side group from which these polymer types are derived is shown in Figure 2.36 [197]. [Pg.91]

CH = CH — CH = CH — are said to have conjugated double bonds and react somewhat differently from the other diolefins. For instance, bromine or hydrogen is often added so that a product of the type -CHBr-CH=CH-CHBr- is formed. Also, these hydrocarbons participate in the Diels-Alder reaction see diene reactions). They show a tendency to form rubber-like polymers. Hydrocarbons not falling into these two classes are said to have isolated double... [Pg.142]

There is one special class of reaction systems in which a simplification occurs. If collisional energy redistribution of some reactant occurs by collisions with an excess of heat bath atoms or molecules that are considered kinetically structureless, and if fiirthennore the reaction is either unimolecular or occurs again with a reaction partner M having an excess concentration, dien one will have generalized first-order kinetics for populations Pj of the energy levels of the reactant, i.e. with... [Pg.1050]

Diels-Alder reactions can be divided into normal electron demand and inverse electron demand additions. This distinction is based on the way the rate of the reaction responds to the introduction of electron withdrawing and electron donating substituents. Normal electron demand Diels-Alder reactions are promoted by electron donating substituents on the diene and electron withdrawii substituents on the dienophile. In contrast, inverse electron demand reactions are accelerated by electron withdrawing substituents on the diene and electron donating ones on the dienophile. There also exists an intermediate class, the neutral Diels-Alder reaction, that is accelerated by both electron withdrawing and donating substituents. [Pg.4]

Cumulated dienes are those m which one carbon atom is common to two carbon-carbon double bonds The simplest cumulated diene is 1 2 propadiene also called allene and compounds of this class are generally referred to as allenes... [Pg.398]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

There are seven principal classes of accelerators and several miscellaneous products that do not fit into these classes. In addition, many proprietary blends of several accelerators are sold which are designed as cure packages for a specific appHcations. Choosing the best cure system is a responsibiUty of the mbber chemist and requites extensive knowledge of each accelerator type and its appHcabiUty in each elastomer. Table 5 shows a rule of thumb comparison of the scorch/cure rate attributes for the five most widely used classes of accelerators used in the high volume diene-based elastomers. [Pg.237]

The thiophthalimide (CTP) and sulfenamide classes of retarders differ from the organic acid types by thek abiUty to retard scorch (onset of vulcanization) without significantly affecting cure rate or performance properties. Much has been pubUshed on the mechanism of CTP retardation. It functions particularly well with sulfenamide-accelerated diene polymers, typically those used in the the industry. During the initial stages of vulcanization, sulfenamides decompose to form mercaptobenzothiazole (MBT) and an amine. The MBT formed reacts with additional sulfenamide to complete the vulcanization process. If the MBT initially formed is removed as soon as it forms, vulcanization does not occur. It is the role of CTP to remove MBT as it forms. The retardation effect is linear with CTP concentration and allows for excellent control of scorch behavior. [Pg.238]

The principal objection to -PDA antiozonants is their staining characteristics. The lack of suitable alternative antiozonants for light-colored diene mbber articles is one of the outstanding problems in mbber technology. Pew chemical antiozonants outside the class of -PDAs have much commercial importance. One of the few exceptions to this rule is 6-ethoxy-l,2-dihydro-2,2,4-trimethylquinoline [91-53-2] one of the first commercial antiozonants. [Pg.237]

The dlenophlle, 3-acetyl-2(3H)-oxazolane, Is an attractive Intermediate for the synthesis of vicinal aminoalcohols with cIs configurations. It reacts with 1,3-dienes, even under quite mild conditions, to form (4+2) cycloadducts. Its high reactivity with deactivated 1,3-dienes Is noteworthy. This property is present also in 2(3H)-oxa201one which can be obtained easily through solvolysis of 3-acetyl-2(3H)-oxa2olone In methanol. 3-Acetyl-2(3H)-oxazolone, on UV irradiation In the presence of a sensitizer, combines easily with olefins to form (2+2) cycloadducts, the hydrolysis of which leads to the class of cis-2-aminocyclobutanols. [Pg.156]

Aliphatic Polyolefins other than Polyethylene, and Diene Rubbers The major additional classes of additive are ... [Pg.284]

These materials differ from the previous class of resin in that the basic structure of these molecules consists of long chains whereas the cyclic aliphatics contain ring structures. Three subgroups may be distinguished, epoxidised diene polymers, epoxidised oils, and polyglycol diepoxides. [Pg.766]

Several highly enantioselective Diels-Alder reactions are known for which the di-enophile does not fit any of the above classes. Corey and coworkers applied the chiral aluminum reagent 36 with a C2-symmetric stilbenediamine moiety (videsu-pra) to the Diels-Alder reaction of maleimides as dienophiles [54] (Scheme 1.68). In most asymmetric Diels-Alder reactions the reactants are usually relatively simple dienes such as cyclopentadiene or monosubstituted butadienes, and unsym-... [Pg.43]

The cycloaddition reactions of carbonyl compounds with conjugated dienes cannot be discussed in this context without trying to understand the reaction mechanistically. This chapter will give the basic background to the reactions whereas Chapter 8 dealing with theoretical aspects of metal-catalyzed cycloaddition reactions will give a more detailed description of this class of reactions, and others discussed in this book. [Pg.152]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

Chiral boron(III) complexes can catalyze the cycloaddition reaction of glyoxy-lates with Danishefsky s diene (Scheme 4.18) [27]. Two classes of chiral boron catalyst were tested, the / -amino alcohol-derived complex 18 and bis-sulfonamide complexes. The former catalyst gave the best results for the reaction of methyl glyoxylate 4b with diene 2a the cycloaddition product 6b was isolated in 69% yield and 94% ee, while the chiral bis-sulfonamide boron complex resulted in only... [Pg.164]

Alkadienes, alkatrienes, and alkatetraenes (poly-enes). These are unsaturated aliphatic hydrocarbons containing two, three, or four C = C double bonds, respectively. Alkadienes are also called diolefins or dienes, and alkatrienes are also known as triolefins or tricncs. Alkenes containing multiple double bonds fall under the general class of poly-enes. Double bonds that alternate with single bonds in a straight chain are said to be conjugated. Examples are... [Pg.307]

The selectivity for two-alkyne annulation can be increased by involving an intramolecular tethering of the carbene complex to both alkynes. This was accomplished by the synthesis of aryl-diynecarbene complexes 115 and 116 from the triynylcarbene complexes 113 and 114, respectively, and Danishefsky s diene in a Diels-Alder reaction [70a]. The diene adds chemoselectively to the triple bond next to the electrophilic carbene carbon. The thermally induced two-alkyne annulation of the complexes 115 and 116 was performed in benzene and yielded the steroid ring systems 117 and 118 (Scheme 51). This tandem Diels-Alder/two-alkyne annulation, which could also be applied in a one-pot procedure, offers new strategies for steroid synthesis in the class O—>ABCD. [Pg.149]

These dienes are valuable for the Diels-Alder based synthesis of dibenzofurans, dibenzothiophenes, carbazoles and other classes of complex polycyclic heterocyclic compounds. Scheme 2.32 summarizes some of the cycloadditions [81] of 2-vinylbenzofurans (80). [Pg.59]

Supported Lewis acids are an interesting class of catalysts because of their operational simplicity, filterability and reusability. The polymer-bound iron Lewis-acid 53 (Figure 3.8) has been found [52] to be active in the cycloadditions of a, S-unsaturated aldehydes with several dienes. It has been prepared from (ri -vinylcyclopentadienyl)dicarbonylmethyliron which was copolymerized with divinylbenzene and then treated with trimethylsilyltriflate followed by THF. Some results of the Diels-Alder reactions of acrolein and crotonaldehyde with isoprene (2) and 2,3-dimethylbutadiene (4) are summarized in Equation 3.13. [Pg.115]


See other pages where Dienes classes is mentioned: [Pg.364]    [Pg.62]    [Pg.62]    [Pg.13]    [Pg.364]    [Pg.62]    [Pg.62]    [Pg.13]    [Pg.126]    [Pg.398]    [Pg.421]    [Pg.443]    [Pg.444]    [Pg.184]    [Pg.239]    [Pg.643]    [Pg.398]    [Pg.697]    [Pg.907]    [Pg.129]    [Pg.15]    [Pg.115]    [Pg.183]    [Pg.36]    [Pg.336]    [Pg.956]    [Pg.434]    [Pg.617]    [Pg.36]    [Pg.210]    [Pg.62]    [Pg.256]    [Pg.956]   
See also in sourсe #XX -- [ Pg.769 ]




SEARCH



© 2024 chempedia.info