Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dielectric barium titanate

The temperature behavior of ceramic capacitors depends on the Kd range, and the variation of Kd increases with its value. Yet, the temperature characteristics of ceramic capacitors can be tailored using special additions to the dielectric (barium titanate) and carefully controlled technology. A wide variety... [Pg.190]

Ceramics as Dielectrics Barium titanate is used as a miniature capacitor because of its dielectric properties, which include ferroelectric-ity and piezoelectricity. Figure 1.7 shows ceramic piezoelectric parts and assemblies. [Pg.11]

Other. Insoluble alkaline-earth metal and heavy metal stannates are prepared by the metathetic reaction of a soluble salt of the metal with a soluble alkah—metal stannate. They are used as additives to ceramic dielectric bodies (32). The use of bismuth stannate [12777-45-6] Bi2(Sn02)3 5H20, with barium titanate produces a ceramic capacitor body of uniform dielectric constant over a substantial temperature range (33). Ceramic and dielectric properties of individual stannates are given in Reference 34. Other typical commercially available stannates are barium stannate [12009-18-6] BaSnO calcium stannate [12013 6-6] CaSnO magnesium stannate [12032-29-0], MgSnO and strontium stannate [12143-34-9], SrSnO. ... [Pg.66]

Alkaline-Earth Titanates. Some physical properties of representative alkaline-earth titanates ate Hsted in Table 15. The most important apphcations of these titanates are in the manufacture of electronic components (109). The most important member of the class is barium titanate, BaTi03, which owes its significance to its exceptionally high dielectric constant and its piezoelectric and ferroelectric properties. Further, because barium titanate easily forms solid solutions with strontium titanate, lead titanate, zirconium oxide, and tin oxide, the electrical properties can be modified within wide limits. Barium titanate may be made by, eg, cocalcination of barium carbonate and titanium dioxide at ca 1200°C. With the exception of Ba2Ti04, barium orthotitanate, titanates do not contain discrete TiO ions but ate mixed oxides. Ba2Ti04 has the P-K SO stmcture in which distorted tetrahedral TiO ions occur. [Pg.127]

Barium carbonate also reacts with titania to form barium titanate [12047-27-7] BaTiO, a ferroelectric material with a very high dielectric constant (see Ferroelectrics). Barium titanate is best manufactured as a single-phase composition by a soHd-state sintering technique. The asymmetrical perovskite stmcture of the titanate develops a potential difference when compressed in specific crystallographic directions, and vice versa. This material is most widely used for its strong piezoelectric characteristics in transducers for ultrasonic technical appHcations such as the emulsification of Hquids, mixing of powders and paints, and homogenization of milk, or in sonar devices (see Piezoelectrics Ultrasonics). [Pg.480]

Barium titanate has widespread use ia the electronics iadustry. Its high dielectric constant and the ease with which its electrical properties can be modified by combination with other materials make it exceptionally suitable for a variety of items, ie, miniature capacitors (see Ceramics as electrical materials). [Pg.482]

Barium titanate is usually produced by the soHd-state reaction of barium carbonate and titanium dioxide. Dielectric and pie2oelectric properties of BaTiO can be affected by stoichiometry, micro stmcture, and additive ions that can enter into soHd solution. In the perovskite lattice, substitutions of Pb ", Sr ", Ca ", and Cd " can be made for part of the barium ions, maintaining the ferroelectric characteristics. Similarly, the TP" ion can partially be replaced with Sn +, Zr +, Ce +, and Th +. The possibihties for forming solution alloys in all these stmctures offer a range of compositions, which present a... [Pg.482]

Historically, materials based on doped barium titanate were used to achieve dielectric constants as high as 2,000 to 10,000. The high dielectric constants result from ionic polarization and the stress enhancement of k associated with the fine-grain size of the material. The specific dielectric properties are obtained through compositional modifications, ie, the inclusion of various additives at different doping levels. For example, additions of strontium titanate to barium titanate shift the Curie point, the temperature at which the ferroelectric to paraelectric phase transition occurs and the maximum dielectric constant is typically observed, to lower temperature as shown in Figure 1 (2). [Pg.342]

Fig. 1. Effect of compositional variations on the dielectric properties of strontium titanate-barium titanate solid solutions. A, BaQ SrQ QTiO B,... Fig. 1. Effect of compositional variations on the dielectric properties of strontium titanate-barium titanate solid solutions. A, BaQ SrQ QTiO B,...
Structural binder A wide range of applications in electronics makes use of the plastics as a structural binder to hold active materials. For example, a plastic such as polyvinylidene fluoride is filled with an electroluminescent phosphor to form the dielectric element in electroluminescent lamps. Plastics are loaded with barium titanate and other high dielectric powders to make slugs for high K capacitors. The cores in high frequency transformers are made using iron and iron oxide powders bonded with a plastic and molded to form the magnetic core. [Pg.228]

Barium titanate has many important commercial apphcations. It has both ferroelectric and piezoelectric properties. Also, it has a very high dielectric constant (about 1,000 times that of water). The compound has five crystalline modifications, each of which is stable over a particular temperature range. Ceramic bodies of barium titanate find wide applications in dielectric amplifiers, magnetic amplifiers, and capacitors. These storage devices are used in digital calculators, radio and television sets, ultrasonic apparatus, crystal microphone and telephone, sonar equipment, and many other electronic devices. [Pg.94]

Barium titanate, BaTiOs, is a ferroelectric material (see Chapter 9) widely used in capacitors because of its high dielectric constant. It was initially prepared by heating barium carbonate and titanium dioxide at high temperature. [Pg.154]

The dielectric constant of barium titanate, along [001] is about 200 and along [100] it is 4000 at room temperature.3 The spontaneous polarization at room temperature is 26 X 10-6 C./cm.2, and the value of the coercive field has been found to vary from 500 to 2000 volts/cm. The crystal structure of barium titanate at room temperature can be represented by a tetragonal unit cell with size of a0 = 3.992 A., and c0 = 4.036 A., but the symmetry becomes cubic above 120°C., at which temperature the crystals no longer exhibit ferroelectric properties. [Pg.143]

Barium titanate and BaTi03-based materials are most commonly used for ceramic capacitors with high dielectric permittivity. BaTi03 powder of extremely high quality (in respect of its purity, stoichiometry, particles morphology) is required for most of the modem applications. This characteristic may be considerably improved by the application of alkoxide precursors. Thus, it is of no surprise that synthesis of BaTi03 and BaTi03-based materials from metal alkoxides attracted considerable attention for several decades. The first works on... [Pg.129]

Let s return for a moment to the dielectric of the capacitor. The er- value of the dielectric is dependent on the ability to shift charges within that dielectric. This explains why barium titanate is a suitable dielectric and why the .- value can be varied when you influence the mobility of the titanium ions by building in foreign ions. The latter is illustrated in Table 11.4.4. [Pg.248]

Table 11.4.4 Some er values of barium titanate dielectrics... Table 11.4.4 Some er values of barium titanate dielectrics...
A ferroelectric model material is barium titanate BaTi03. On cooling from high temperatures, the permittivity increases up to values well above 10,000 at the phase transition temperature Tc. The inverse susceptibility as well as the dielectric permittivity follows a Curie-Weiss law x1 f 1 oc (T — O). The appearance of the spontaneous polarization is accompanied with a spontaneous (tetragonal) lattice distortion. [Pg.17]

Figure 1.9 Reciprocal dielectric susceptibility at the phase transition of lithium tantalate (second order phase transition) and of barium titanate (first order phase transition). Figure 1.9 Reciprocal dielectric susceptibility at the phase transition of lithium tantalate (second order phase transition) and of barium titanate (first order phase transition).
The dielectric behavior closed to a phase transistion is displayed in Figure 1.9 for barium titanate (first-order transition with Tc = 135°C, C = 1.8 105oC) and for lithium tantalate (second-order transition with Tc = 618°C and C = 1.6 105 °C). [Pg.21]

The compositions of most dielectric materials used for ceramic capacitors are based on ferroelectric barium titanate. As discussed in detail in Pragraph 1.3 the permittivity of ferroelectric perovskites shows marked changes with temperature, particularly close to the phase transition. From the device point of view a high dielectric permittivity with stable properties over a wide temperature range is required. There are various specifications which have to be fulfilled (e.g. X7R AC/C(T = 25°C) < 0.15 in a range between -55°C and 125°C). [Pg.27]

Ferroelectric behaviour is limited to certain materials and to particular temperature ranges for a given material. As shown for barium titanate in Section 2.7.3, Fig. 2.40(c), they have a Curie point Tc, i.e. a temperature at which the spontaneous polarization falls to zero and above which the properties change to those of a paraelectric (i.e. a normal dielectric). A few ferroelectrics, notably Rochelle Salt (sodium potassium tartrate tetrahydrate (NaKC406.4H20)) which was the material in which ferroelectric behaviour was first recognized by J. Yalasek in 1920, also have lower transitions below which ferroelectric properties disappear. [Pg.59]

It is also possible to retain the hydrothermally produced barium titanate particles in aqueous suspension to form the basis of a tape-casting slurry capable of producing < 3 /mi dielectric layers. This route avoids the risk of the formation of hard agglomerates on drying the precipitates. [Pg.101]

Multilayer capacitors A critical step in the manufacture of multilayer capacitors is, of course, the barium titanate-based starting powders, and the various routes for producing these are described in Section 3.4. The multilayer capacitor structure (Fig. 5.11) enables the maximum capacitance available from a thin dielectric to be packed into the minimum space in a mechanically robust form. [Pg.263]

The dielectric characteristics of barium titanate ceramics with respect to temperature, electric field strength, frequency and time (ageing) are very dependent on the substitution of minor amounts of other ions for Ba or Ti. [Pg.311]

Frey, M.H. et al. (1998) The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics, Ferroelectrics, 206-207, 337-53. [Pg.337]


See other pages where Dielectric barium titanate is mentioned: [Pg.309]    [Pg.203]    [Pg.207]    [Pg.500]    [Pg.548]    [Pg.128]    [Pg.128]    [Pg.482]    [Pg.349]    [Pg.360]    [Pg.274]    [Pg.118]    [Pg.60]    [Pg.572]    [Pg.365]    [Pg.387]    [Pg.390]    [Pg.391]    [Pg.385]    [Pg.541]    [Pg.548]    [Pg.3]    [Pg.311]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Barium titanate

Titan

Titanate

Titanates

Titanates barium

Titanation

Titane

© 2024 chempedia.info