Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonium radical

In summary, the copper ion transfers an electron from the unsaturated substrate to the diazo-nium cation, and the newly formed diazonium radical quickly loses nitrogen. The aryl radical formed attacks the ethylenic bond within the active complexes that originated from aryldiazo-nium tetrachlorocuprate(II)-olefin or initial arydiazonium salt-catalyst-olefln associates and yields >C(Ar)-C < radical. The latter was detected by the spin-trap ESR spectroscopy. The formation of both the cation-radical [>C=C<] and radical >C(Ar)-C < as intermediates indicates that the reaction involves two catalytic cycles. In the other case, radical >C(Ar)-C < will not be formed, being consumed in the following reaction ... [Pg.263]

Figure 2.25 (a) Schematic sho ing the modification of an HOPG surface ith an electrogenerated diazonium radical, (b) AFM image of the deposition array on HOPG. CVs... [Pg.72]

The covalent sidewall functionalization of SWCNTs has been conducted by a number of researchers. Highly reactive addends are needed for the sidewall functionalization reactions. The outer surface of SWCNTs is more active than the inner surface. There are several methods for covalent side-wall functionalization of SWCNTs, including fluorination, diazonium, radical chemistry, nitrene, azomethine ylides and dichlorocarbene, as shown in Table 4.2. The added functional groups include aryl, fluorine, pyrrolidine, aziridine and cyclopropane. Multiple analytical techniques can be used to... [Pg.112]

When an aqueous solution of a diazonium salt is added to an alkaline solution of a phenol, coupling occurs with formation of an azo-compound (p. 188). If ho vc cr the ntiueous solution of the diazonium salt, t. . ., />-bromohenzene diazonium chloride, is mixed with an excess of an aromatic hydrocarbon, and aqueous sodium hydroxide then added to the vigorously stirred mixture, the diazotate which is formed, e.g., BrC,H N OH, dissolves in the hydrocarbon and there undergoes decomposition with the formation of nitrogen and two free radicals. The aryl free radical then reacts with the hydrocarbon to give a... [Pg.201]

Protonic initiation is also the end result of a large number of other initiating systems. Strong acids are generated in situ by a variety of different chemistries (6). These include initiation by carbenium ions, eg, trityl or diazonium salts (151) by an electric current in the presence of a quartenary ammonium salt (152) by halonium, triaryl sulfonium, and triaryl selenonium salts with uv irradiation (153—155) by mercuric perchlorate, nitrosyl hexafluorophosphate, or nitryl hexafluorophosphate (156) and by interaction of free radicals with certain metal salts (157). Reports of "new" initiating systems are often the result of such secondary reactions. Other reports suggest standard polymerization processes with perhaps novel anions. These latter include (Tf)4Al (158) heteropoly acids, eg, tungstophosphate anion (159,160) transition-metal-based systems, eg, Pt (161) or rare earths (162) and numerous systems based on tri flic acid (158,163—166). Coordination polymerization of THF may be in a different class (167). [Pg.362]

Owing to their particular interest two individual reactions will now be discussed separately. The reaction of methoxycarbonylhydrazine and 3-bromo-2,4-pentanedione affords, in addition to the expected pyrazole (608), a pyrazolium salt (609), the structure of which was established by X-ray crystallography (74TL1987). Aryldiazonium salts have been used instead of arylhydrazines in the synthesis of pyrazolines (610) and pyrazoles (611) (82JOC81). These compounds are formed by free radical decomposition of diazonium salts by titanium(n) chloride in the presence of a,/3-ethylenic ketones. [Pg.278]

Other limitations of the reaction are related to the regioselectivity of the aryl radical addition to double bond, which is mainly determined by steric and radical delocalization effects. Thus, methyl vinyl ketone gives the best results, and lower yields are observed when bulky substituents are present in the e-position of the alkene. However, the method represents complete positional selectivity because only the g-adduct radicals give reductive arylation products whereas the a-adduct radicals add to diazonium salts, because of the different nucleophilic character of the alkyl radical adduct. ... [Pg.70]

Modifications of this method, such as the use of the more stable diazonium trifluoroacetates and the decomposition of benzenedia-zonium zincichloride with zinc dust, have been used as sources of aryl radicals, although not in the arylation of heterocyclic compounds. Pyridine, quinoline, and thiophene can be phenylated by treatment with benzenediazonium chloride and aluminum trichloride. ... [Pg.132]

An arenediazonium ion 1 in aqueous alkaline solution is in equilibrium with the corresponding diazohydroxide 4 The latter can upon deprotonation react with diazonium ion 1, to give the so-called anhydride 5. An intermediate product 5 can decompose to a phenyl radical 6 and the phenyldiazoxy radical 7, and molecular nitrogen. Evidence for an intermediate diazoanhydride 5 came from crossover experiments " ... [Pg.140]

Aryl radicals are produced in the decomposition of alkylazobenzenes and diazonium salts, and by f)-scission of aroyloxy radicals (Scheme 3.73). Aryl radicals have been reported to react by aromatic subsitution (e.g. of Sh) or abstract hydrogen (e.g. from MMA10) in competition with adding to a monomer double bond. However, these processes typically account for <1% of the total. The degree of specificity for tail vs head addition is also very high. Significant head addition has been observed only where tail addition is retarded by sleric factors e.g. methyl crotonate10 and -substituted methyl vinyl ketones 79, 84). [Pg.117]

Aromatic diazonium salts are almost as important for reactions in which the diazonio group is lost as molecular nitrogen and in which aryl cations and radicals are the reagent proper (dediazoniation reactions, see Chs. 8 and 10). [Pg.4]

The radical and the anion, R-N2 and R-N2, derived (formally) from a diazonium ion by addition of one and two electrons respectively, are named as diazenyl ( radical at the end is not necessary ) and diazenide (IUPAC, 1993). The radical derived formally from a diazoalkane by addition of a hydrogen atom (R=N-NH) is named diazanyl . In order to be consistent with the nomenclature of diazonium ions, the name of the parent compound should precede the words mentioned, e. g., benzenediazenyl for C6H5 - NJ (the term phenyldiazenyl radical is, however, used by Chemical Abstracts). [Pg.6]

In contrast to the acid, sodium nitrite should not in general be added in excess. Firstly, as far as the ratio of amine to nitrite is concerned, diazotization is practically a quantitative reaction. In consequence, it provides the most important method for determining aromatic amines by titration. Secondly, an excess of nitrous acid exerts a very unfavorable influence on the stability of diazo solutions, as was shown by Gies and Pfeil (1952). Mechanistically the reactions between aromatic diazonium and nitrite ions were investigated more recently by Opgenorth and Rtichardt (1974). They showed that the primary and major reaction is the formation of aryl radicals from the intermediate arenediazonitrite (Ar —N2 —NO2). Details will be discussed in the context of homolytic dediazoniations (Secs. 8.6 and 10.6). [Pg.13]

Another redox reaction leading to arenediazonium salts was described by Morkov-nik et al. (1988). They showed that the perchlorates of the cation-radicals of 4-A,A-dimethylamino- and 4-morpholinoaniline (2.63) react with gaseous nitric oxide in acetone in a closed vessel. The characteristic red coloration of these cation-radical salts (Michaelis and Granick, 1943) disappears within 20 min., and after addition of ether the diazonium perchlorate is obtained in 84% and 92% yields, respectively. This reaction (Scheme 2-39) is important in the context of the mechanism of diazotization by the classical method (see Sec. 3.1). [Pg.38]

This statement does not mean, however, that the mechanism of diazotization was completely elucidated with that breakthrough. More recently it was possible to test the hypothesis that, in the reaction between the nitrosyl ion and an aromatic amine, a radical cation and the nitric oxide radical (NO ) are first formed by a one-electron transfer from the amine to NO+. Stability considerations imply that such a primary step is feasible, because NO is a stable radical and an aromatic amine will form a radical cation relatively easily, especially if electron-donating substituents are present. As discussed briefly in Section 2.6, Morkovnik et al. (1988) found that the radical cations of 4-dimethylamino- and 4-7V-morpholinoaniline form the corresponding diazonium ions with the nitric oxide radical (Scheme 2-39). [Pg.43]

Morkovnik et al. (1989) found experimentally that the addition of an equimolar amount of 4-morpholino- or 4-dimethylaminoaniline to a suspension of nitrosyl perchlorate in 100 % acetic acid, dioxan, or acetonitrile yields a mixture of the diazonium perchlorate and the perchlorate salt of the amine radical cation, with liberation of gaseous nitric oxide. Analogous results in benzene, including evidence for radicals by ESR spectroscopy and by spin trapping experiments, were obtained by Reszka et al. (1990). [Pg.43]

Simple mechanistic considerations easily explain why heterolytic dissociation of the C — N bond in a diazonium ion is likely to occur, as a nitrogen molecule is already preformed in a diazonium ion. On the other hand, homolytic dissociation of the C —N bond is very unlikely from an energetic point of view. In heterolysis N2, a very stable product, is formed in addition to the aryl cation (8.1), which is a metastable intermediate, whereas in homolysis two metastable primary products, the aryl radical (8.2) and the dinitrogen radical cation (8.3) would be formed. This event is unlikely indeed, and as discussed in Section 8.6, homolytic dediazoniation does not proceed by simple homolysis of a diazonium ion. [Pg.164]

Scaiano and Kim-Thuan (1983) searched without success for the electronic spectrum of the phenyl cation using laser techniques. Ambroz et al. (1980) photolysed solutions of three arenediazonium salts in a glass matrix of 3 M LiCl in 1 1 (v/v) water/acetone at 77 K. With 2,4,5-trimethoxybenzenediazonium hexafluorophos-phate Ambroz et al. observed two relatively weak absorption bands at 415 and 442 nm (no e-values given) and a reduction in the intensity of the 370 nm band of the diazonium ion. The absence of any ESR signals indicates that these new bands are not due to aryl radicals, but to the aryl cation in its triplet ground state. [Pg.170]

Packer and Richardson (1975) and Packer et al. (1980) made use of the fact that electrons can be generated in water by y-radiation from a 60Co source (Scheme 8-29) to induce a free radical chain reaction between diazonium ions and alcohols, aldehydes, or formate ion. It has to be emphasized that the radiolytically formed solvated electron in Scheme 8-29 is only a part of the initiation steps (Scheme 8-30) by which an aryl radical is formed. The aryl radical initiates the propagation steps shown in Scheme 8-31. Here the alcohol, aldehyde, or formate ion (RH2) is the reducing agent (i.e., the electron donor) for the main reaction. The process is a hydro-de-diazoniation. [Pg.190]

In principle it should be possible to predict quantitatively the reactivity of such species containing nucleophilic homolytic leaving groups towards diazonium ions, by using a dual parameter equation. One parameter serves as a measure of the donor property of the particle the other parameter is the redox potential. However, the complex nature of kinetics of homolytic dediazoniations is likely to be a great obstacle in attempts to calculate rate constants referring only to the radical-generation step. [Pg.195]

Xu and Li (1989) investigated H — CIDNP spectra of fifteen substituted benzene-diazonium ions during reduction with NaBH4. The spectra are consistent with a mechanism in which the first step is the addition of a hydride ion to the diazonium ion. The diazene formed (Ar - N2 - H) is assumed to dimerize and disproportionate into a radical pair [Ar-N-NH2 N = N — Ar] which loses one equivalent of N2 yielding [Ar—N —NH2 Ar] and recombines to give the diarylhydrazine. A proportion of the aryl radicals escape and form the hydro-de-diazoniation product. [Pg.195]

A comparison of the products from the four benzenediazonium salts makes it clear that an increase in the electrophilicity of the diazonium ion favors homolytic dediazoniation in borderline solvents. As discussed in Section 8.6, increased electrophilicity is accompanied by an increase in the reduction potential (Ei/2), which is a measure of the tendency to add an electron and form an arenediazenyl radical (Ar-N ). [Pg.200]


See other pages where Diazonium radical is mentioned: [Pg.454]    [Pg.394]    [Pg.327]    [Pg.103]    [Pg.454]    [Pg.394]    [Pg.327]    [Pg.103]    [Pg.304]    [Pg.591]    [Pg.305]    [Pg.107]    [Pg.54]    [Pg.761]    [Pg.909]    [Pg.132]    [Pg.132]    [Pg.134]    [Pg.17]    [Pg.17]    [Pg.43]    [Pg.62]    [Pg.80]    [Pg.108]    [Pg.187]    [Pg.190]    [Pg.196]   
See also in sourсe #XX -- [ Pg.394 ]




SEARCH



Diazonium ions radicals from

Radical reactions of diazonium ions

© 2024 chempedia.info