Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonium ions with nucleophiles

In this paper reactions of aromatic, heteroaromatic and related diazonium ions with nucleophiles are dia ussed. In such reactions substitution by the diazonium ion of an electrofugic atom or group bonded to carbon takes place. Occasionally reference is made to N- and P-coupling. In Section 4 the respective substitution at nitrogen (formation of diazoamino compounds) is included for comparative purposes. [Pg.2]

The conductometric results of Meerwein et al. (1957 b) mentioned above demonstrate that, in contrast to other products of the coupling of nucleophiles to arenediazonium ions, the diazosulfones are characterized by a relatively weak and polarized covalent bond between the p-nitrogen and the nucleophilic atom of the nucleophile. This also becomes evident in the ambidentate solvent effects found in the thermal decomposition of methyl benzenediazosulfone by Kice and Gabrielson (1970). In apolar solvents such as benzene or diphenylmethane, they were able to isolate decomposition products arising via a mechanism involving homolytic dissociation of the N — S bond. In a polar, aprotic solvent (acetonitrile), however, the primary product was acetanilide. The latter is thought to arise via an initial hetero-lytic dissociation and reaction of the diazonium ion with the solvent (Scheme 6-11). [Pg.118]

The reaction is especially suited to the generation of optically active diazonium ions with specifically oriented counter-ions. In this respect it has possibilities which are absent for the reaction of diazoalkanes with acids and the deamination of aliphatic amines. However, in carrying out stereochemical studies, great care must be exercised to avoid spurious results, since the transient formation of a diazoalkane, either by loss of a proton from the diazonium ion or by what is probably a concerted elimination reaction of the diazoester, can lead to racemisation of the alkyl function and loss of asymmetry in the anion. Moreover, the diazoester is liable to nucleophilic displacement, for example by an acid molecule formed from already rearranged nitrosoamide, and this can lead to inverted product. [Pg.359]

An important observation has been made recently by Brosch and Kirmse. They showed that the nitrous acid deamination of optically active [1- H] butylamine and [1- H] methyl propylamine both proceed with complete ( 2%) inversion of configuration. Reaction via a carbocation is unlikely to proceed with complete inversion of configuration reaction of a diazonium ion with a nucleophile must proceed with complete inversion of configuration. Although ion pairs would be involved in the carbocation reaction it is unlikely that they would give a completely inverted product. [Pg.540]

A few 3-cyanopyridines have been prepared, in 40-50 per cent yield, by reaction of a 3-pyridyl diazonium salt with potassium cuprocyanide or cuprous cyanide2i8, 755-7 Though 2- and 4-aminopyridines have been converted into 2- and 4-halogenopyridines via the diazonium reaction, the ready reaction of the 2- and 4-pyridyldiazonium ions with nucleophiles present in the solutions in which they are formed makes their use in cyana-tion difficult if not impossible. The difference in ease of diazotization between a 2- and a 3-aminopyridine permits the conversion of 2,5-diaminopyridine into 2-amino-5-cyanopyridine by diazotization in dilute acid is. The easier diazotization (p. 359) of 4-aminopyridine 1-oxides and the greater stability... [Pg.226]

Nucleophilic substitution reactions that occur imder conditions of amine diazotization often have significantly different stereochemisby, as compared with that in halide or sulfonate solvolysis. Diazotization generates an alkyl diazonium ion, which rapidly decomposes to a carbocation, molecular nitrogen, and water ... [Pg.306]

FIGURE 22.5 The diazonium ion generated by treatment of a primary alkylamine with nitrous acid loses nitrogen to give a carbocation. The isolated products are derived from the carbocation and include, in this example, alkenes (by loss of a proton) and an alcohol (nucleophilic capture by water). [Pg.944]

Aniline, PI1NH2, reacts with sodium nitrite, NaN02, and aqueous acid to give phenyl diazonium ion, PhN2. This ion can be isolated, but it also reacts readily with certain nucleophiles to give substitution products, e.g. [Pg.208]

Phenyl diazonium ion, PhN2, reacts with nucleophiles in several ways. Water displaces N2 to give phenol, while dimethylamine adds to the terminal N. [Pg.209]

Next, consider the reactivity of phenyl diazonium ion. Are either of the reactions shown above consistent with nucleophilic attack at the ion s most electron-poor site Examine the lowest-unoccupied molecular orbital (LUMO) of phenyl diazonium ion. What electrophilic sites are identified by the LUMO Are either of the reactions shown above consistent with an orbital-controlled addition ... [Pg.209]

In Eq. (3), the unstable methyl diazonium ion decomposes by S l reaction into nitrogen and a methyl cation w hich combines with the anion Z to give CH3—Z. In Eq. (4) an Sk2 reaction occurs. The loss of the nitrogen from CH3—here takes place only wdth the participation of the anion as nucleophile. [Pg.246]

The changes in the substituent constants and in the parameters F and R on going from the diazonium ion to various addition products provide a useful probe for understanding the mechanism(s) of addition of these nucleophiles to arenediazonium ions. Such constants and parameters are listed in Table 7-4. All values are taken from the relevant tables in the paper by Hansch et al. (1991). With the exception of the last three entries, which we shall discuss later, the products of nucleophile additions are arranged in a sequence of decreasing electron-withdrawing capability, as estimated from the values of <7m and op for the substituent corresponding to the nucleophile added. ... [Pg.153]

In the reactions of nucleophiles with diazonium ions the rate-determined product is, in many cases, a (Z)-azo compound, in spite of the fact that the (is)-isomers are... [Pg.155]

In a classic study in 1940, Crossley and coworkers demonstrated that the rates of nucleophilic substitution of the diazonio group of the arenediazonium ion in acidic aqueous solution were independent of the nucleophile concentration, and that these rates were identical with the rate of hydrolysis. Since that time it has therefore been accepted without question that these reactions proceed by a DN + AN mechanism, i.e., that they consist of a rate-determining irreversible dissociation of the diazonium ion into an aryl cation and nitrogen followed by rapid reactions of the cation with water or other nucleophiles present in solution (Scheme 8-6). [Pg.166]

All these results are consistent with the hypothesis that aryl cations react in aqueous media at diffusion-controlled rates with all nucleophiles that are available in the immediate neighbourhood of the diazonium ion. On this basis Romsted and coworkers (Chaudhuri et al., 1993a, 1993b) used dediazoniation reactions as probes of the interfacial composition of association colloids. These authors determined product yields from dediazoniation of two arenediazonium tetrafluoroborates containing ft-hexadecyl residues (8.15 and 8.16) and the corresponding diazonium salts with methyl groups instead of Ci6H33 chains. ... [Pg.173]

Two inorganic nucleophiles that react easily with arenediazonium ion, namely the nitrite ion and the hydroxide ion, provide good examples of the concept of the nucleophilic homolytic leaving group. By electron transfer to a diazonium ion the... [Pg.194]

Elegant evidence that free electrons can be transferred from an organic donor to a diazonium ion was found by Becker et al. (1975, 1977a see also Becker, 1978). These authors observed that diazonium salts quench the fluorescence of pyrene (and other arenes) at a rate k = 2.5 x 1010 m-1 s-1. The pyrene radical cation and the aryldiazenyl radical would appear to be the likely products of electron transfer. However, pyrene is a weak nucleophile the concentration of its covalent product with the diazonium ion is estimated to lie below 0.019o at equilibrium. If electron transfer were to proceed via this proposed intermediate present in such a low concentration, then the measured rate constant could not be so large. Nevertheless, dynamic fluorescence quenching in the excited state of the electron donor-acceptor complex preferred at equilibrium would fit the facts. Evidence supporting a diffusion-controlled electron transfer (k = 1.8 x 1010 to 2.5 X 1010 s-1) was provided by pulse radiolysis. [Pg.208]

The replacement of an electrofugic atom or group at a nucleophilic carbon atom by a diazonium ion is called an azo coupling reaction. By far the most important type of such reactions is that with aromatic coupling components, which was discovered by Griess in 1861 (see Sec. 1.1). It is a typical electrophilic aromatic substitution, called an arylazo-de-hydrogenation in the systematic IUPAC nomenclature (IUPAC 1989c, see Sec. 1.2). [Pg.305]

In Brown s classification a diazonium ion is a reagent of very low reactivity and correspondingly high substrate selectivity and regioselectivity. This follows from the fact that benzenediazonium salts do not normally react with weakly nucleophilic benzene derivatives such as toluene. More reactive heteroaromatic diazonium ions such as substituted imidazole-2-diazonium ions will even react with benzene (see Sec. 12.5). [Pg.306]

As far as we are aware, the azo coupling of an ethyne derivative was only investigated over half a century ago Ainley and (Sir Robert) Robinson (1937) investigated the reaction of phenylethynes (phenylacetylenes) with diazonium ions (Scheme 12-59). Unsubstituted phenylethyne did not give identifiable products with the 4-nitrobenzenediazonium ion, but with the more nucleophilic 4-methoxyphenyl-ethyne an azo compound (12.119) was formed. On reaction with water it gives an arylhydrazone of an a-ketoaldehyde (12.120). [Pg.345]

The new reaction appears to be a simple one-step procedure, which is particularly suitable for tertiary alkyl-aryldiazenes for which alternative synthetic routes are less convenient. However, aryl radicals or alkyl radicals in which the carbon-centered radical is bonded to an electron-withdrawing group (COOR, COR, CONR2, CN, S02R, etc.) do not add to diazonium salts or give only poor results (Citterio et al., 1982 c). This indicates that the radical must be a relatively strong nucleophile in order to be able to react with a diazonium ion. [Pg.370]

Primary aromatic amines (e.g., aniline) and secondary aliphatic-aromatic amines (e. g., 7V-methylaniline) usually form triazenes in coupling reactions with benzenedi-azonium salts. If the nucleophilicity of the aryl residue is increased by addition of substituents or fused rings, as in 3-methylaniline and 1- and 2-naphthylamine, aminoazo formation takes place (C-coupling). However, the possibility has also been noted that in aminoazo formation the initial attack of the diazonium ion may still be at the amine N-atom, but the aN-complex might rearrange too rapidly to allow its identification (Beranek and Vecera, 1970). [Pg.395]

These reactions involve a diazonium ion (see 12-47) and are much faster than ordinary hydrolysis for benzamide the nitrous acid reaction took place 2.5 x lo times faster than ordinary hydrolysis. Another procedure for difficult cases involves treatment with aqueous sodium peroxide. In still another method, the amide is treated with water and f-BuOK at room temperature. " The strong base removes the proton from 107, thus preventing the reaction marked k j. A kinetic study has been done on the alkaline hydrolyses of A-trifluoroacetyl aniline derivatives. Amide hydrolysis can also be catalyzed by nucleophiles (see p. 427). [Pg.475]

In all of the above cases involving decompositions of vinyl diazonium ions, the observed products are consistent with a vinyl cation formulation, but extensive mechanistic studies of these reactions have not been reported. It is difficult, for instance, to establish to what extent reaction proceeds through the diazonium ion via a backside nucleophilic attack and concerted loss of nitrogen rather than through the free vinyl cation. In the absence of kinetic data, it is also difficult to rule out competing or alternative mechanisms not involving vinyl cations. [Pg.257]


See other pages where Diazonium ions with nucleophiles is mentioned: [Pg.27]    [Pg.110]    [Pg.638]    [Pg.183]    [Pg.183]    [Pg.302]    [Pg.638]    [Pg.84]    [Pg.426]    [Pg.362]    [Pg.154]    [Pg.162]    [Pg.241]    [Pg.26]    [Pg.109]    [Pg.111]    [Pg.116]    [Pg.116]    [Pg.157]    [Pg.318]    [Pg.350]    [Pg.359]    [Pg.389]    [Pg.874]    [Pg.875]    [Pg.1394]    [Pg.6]   
See also in sourсe #XX -- [ Pg.645 , Pg.669 , Pg.670 ]




SEARCH



Diazonium ions nucleophilic

© 2024 chempedia.info