Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazoacetates cycloaddition

The reaction of cyclohexene with the diazopyruvate 25 gives unexpectedly ethyl 3-cyclohexenyl malonate (26), involving Wolff rearrangement. No cyclo-propanation takes place[28]. 1,3-Dipolar cycloaddition takes place by the reaction of acrylonitrile with diazoacetate to afford the oxazole derivative 27[29]. Bis(trimethylstannyl)diazomethane (28) undergoes Pd(0)-catalyzed rearrangement to give the A -stannylcarbodiimide 29 under mild conditions[30]. [Pg.532]

From Diazo Compounds via 1,3-Dipolar Cycloaddition. This method has been utilized widely in heterocychc chemistry. Pyrazohne (57) has been synthesized by reaction of ethyl diazoacetate (58) with a,P-unsaturated ester in the presence of pyridine (eq. 12) (42). [Pg.314]

Since 1,3-dipolar cycloadditions of diazomethane are HOMO (diazomethane)-LUMO (dipolarophile) controlled, enamines and ynamines with their high LUMO energies do not react (79JA3647). However, introduction of carbonyl functions into diazomethane makes the reaction feasible in these cases. Thus methyl diazoacetate and 1-diethylaminopropyne furnished the aminopyrazole (620) in high yield. [Pg.283]

The normal electron-demand principle of activation of 1,3-dipolar cycloaddition reactions of nitrones has also been tested for the 1,3-dipolar cycloaddition reaction of alkenes with diazoalkanes [71]. The reaction of ethyl diazoacetate 33 with 19b in the presence of a TiCl2-TADDOLate catalyst 23a afforded the 1,3-dipolar cycloaddition product 34 in good yield and with 30-40% ee (Scheme 6.26). [Pg.231]

Carbenes and substituted carbenes add to double bonds to give cyclopropane derivatives ([1 -f 2]-cycloaddition). Many derivatives of carbene (e.g., PhCH, ROCH) ° and Me2C=C, and C(CN)2, have been added to double bonds, but the reaction is most often performed with CH2 itself, with halo and dihalocarbenes, " and with carbalkoxycarbenes (generated from diazoacetic esters). Alkylcarbenes (HCR) have been added to alkenes, but more often these rearrange to give alkenes (p. 252). The carbene can be generated in any of the ways normally used (p. 249). However, most reactions in which a cyclopropane is formed by treatment of an alkene with a carbene precursor do not actually involve free carbene... [Pg.1084]

Syntheses of fluoro-substituted pyrazoles continue to be of interest. Both 3- and 5-fluoropyrazoles (44 and 45, respectively) can be prepared from 43 <96JOC2763>. Treatment of 43 with hydrazine followed by N-alkylation provides 44, whereas reactions with monosubstituted hydrazines afford 45. The 4-(trifluoromcthyl)pyrazoles 47 are obtained from J-trifluoromethyl vinamidinium salt 46 <96TL1829>. The 5-trifluoromethyl-3-carboethoxypyrazoles 49 are obtained from the 1,3-dipolar cycloadditions of trifluoromethyl alkenes 48 with ethyl diazoacetate <96T4383>. [Pg.151]

Carboalkoxymethylenes, like acylmethylenes, undergo rearrangement to ketenes as well as the olefin addition and C—H insertion reactions characteristic of methylenes.<37> Thus the photolysis of ethyl diazoacetate in olefinic solvents leads to substantial yields of products, which can be rationalized in terms of a Wolff rearrangement of the carboethoxymethylene followed by cycloaddition of the resulting ethoxyketene to the olefin ... [Pg.555]

Alkinyloxy)diazoacetic esters 11 give rise to product mixtures that could be separated only partially. The isolated products result from a tandem intramolecular cyclopropenation/cyclopropene —> vinylcarbene isomerization (12, 14) and from a twofold intermolecular (3+2)-cycloaddition of the intact diazo compound (13). [Pg.58]

The thermal [1] or photochemical [5] isomerization of N-silylated allylamine in the presence of Fe(CO)5 provides the corresponding N-silylated enamines 7a and 7b. Z-enamine 7b does not react in any of the examined cycloadditions. The cyclopropanation of E-enamine 7a with methyl diazoacetate under copper(I) catalysis provides the donor-acceptor-substituted cyclopropane 9 [1], which can be converted in good yield into the interesting dipeptide 10 [6]. [Pg.65]

Some examples of the lateral cyclization of suitable O-allyl and O-propargyl derivatives were discussed in CHEC-11(1996) <1996CHEC-II(8)747>. Thermal reaction of silyl diazoacetate 303 in xylene provides unspecific decomposition and a minor amount (about 2%) of a colorless solid can be precipitated with ether. The X-ray diffraction analysis identified the structure 305, which is a product of the lateral criss-cross cycloaddition of primarily formed azine 304 (Scheme 43) <2000T4139>. [Pg.411]

EvenPd(OAc)2 is not effective in catalyzing the cyclopropanation of a,P-unsaturated nitriles by ethyl diazoacetate. Instead, vinyloxazoles 92 are formed from acrylonitrile or methacrylonitrile by carbenoid addition to the CsN bond 143 Diethyl maleate and diethyl fumarate as well as polyketocarbenes are by-products in these reactions the 2-pyrazoline which would result from initial [3 + 2] cycloaddition at the C=C bond and which is the sole product of the uncatalyzed reaction at room temperature, can be avoided completely by very slow addition of the diazoester... [Pg.125]

Based on a detailed investigation, it was concluded that the exceptional ability of the molybdenum compounds to promote cyclopropanation of electron-poor alkenes is not caused by intermediate nucleophilic metal carbenes, as one might assume at first glance. Rather, they seem to interfere with the reaction sequence of the uncatalyzed formation of 2-pyrazolines (Scheme 18) by preventing the 1-pyrazoline - 2-pyrazoline tautomerization from occurring. Thereby, the 1-pyrazoline has the opportunity to decompose purely thermally to cyclopropanes and formal vinylic C—H insertion products. This assumption is supported by the following facts a) Neither Mo(CO)6 nor Mo2(OAc)4 influence the rate of [3 + 2] cycloaddition of the diazocarbonyl compound to the alkene. b) Decomposition of ethyl diazoacetate is only weakly accelerated by the molybdenum compounds, c) The latter do not affect the decomposition rate of and product distribution from independently synthesized, representative 1-pyrazolines, and 2-pyrazolines are not at all decomposed in their presence at the given reaction temperature. [Pg.128]

Ethyl diazopyruvate, under copper catalysis, reacts with alkynes to give furane-2-carboxylates rather than cyclopropenes u3) (Scheme 30). What looks like a [3 + 2] cycloaddition product of a ketocarbenoid, may actually have arisen from a primarily formed cyclopropene by subsequent copper-catalyzed ring enlargement. Such a sequence has been established for the reaction of diazoacetic esters with acetylenes in the presence of certain copper catalysts, but metallic copper, in these cases, was not able to bring about the ring enlargement14). Conversely, no cyclopropene derivative was detected in the diazopyruvate reaction. [Pg.175]

The reaction, formally speaking a [3 + 2] cycloaddition between the aldehyde and a ketocarbene, resembles the dihydrofuran formation from 57 a or similar a-diazoketones and alkenes (see Sect. 2.3.1). For that reaction type, 2-diazo-l,3-dicarbonyl compounds and ethyl diazopyruvate 56 were found to be suited equally well. This similarity pertains also to the reactivity towards carbonyl functions 1,3-dioxole-4-carboxylates are also obtained by copper chelate catalyzed decomposition of 56 in the presence of aliphatic and aromatic aldehydes as well as enolizable ketones 276). No such products were reported for the catalyzed decomposition of ethyl diazoacetate in the presence of the same ketones 271,272). The reasons for the different reactivity of ethoxycarbonylcarbene and a-ketocarbenes (or the respective metal carbenes) have only been speculated upon so far 276). [Pg.193]

Pyrazoles can be synthesized by thermal cycloreversion of adducts formed in the 1,3-dipolar cycloaddition of alkyldiazoacetates with norbornadiene. The rate of the primary process of cycloaddition is accelerated by iron pentacarbonyl (Scheme 88)155 a similar catalytic effect has been observed during the formation of ethyl 5-phenyl-A2-pyrazoline-3-carboxylate from cycloaddition of ethyl diazoacetate and styrene.155 Reactions of this type are catalyzed presumably because of coordination of one or both reactants to the transition metal, and a wider study of the effect of a variety of complexes on 1,3-dipolar cycloaddition processes would be valuable. [Pg.358]

The synthesis of 1,2,3-selenadiazole derivatives has been reported. The reaction of aroyl chlorides such as 102 with potassium isoselenocyanate and ethyl diazoacetate yielded 5-(aroylimino)-2,5-dihydro-l, 2,3-selenadiazole-4-carboxylate esters such as 104. A reaction mechanism via the initial formation of the corresponding aroyl isoselenocyanate 103 followed by a 1,3-dipolar cycloaddition of the diazo compound with the C=Se bond is proposed <00HCA539>. [Pg.203]

A study of the regioselectivity of the 1,3-dipolar cycloaddition of aliphatic nitrile oxides with cinnamic acid esters has been published. AMI MO studies on the gas-phase 1,3-dipolar cycloaddition of 1,2,4-triazepine and formonitrile oxide show that the mechanism leading to the most stable adduct is concerted. An ab initio study of the regiochemistry of 1,3-dipolar cycloadditions of diazomethane and formonitrile oxide with ethene, propene, and methyl vinyl ether has been presented. The 1,3-dipolar cycloaddition of mesitonitrile oxide with 4,7-phenanthroline yields both mono-and bis-adducts. Alkynyl(phenyl)iodonium triflates undergo 2 - - 3-cycloaddition with ethyl diazoacetate, Ai-f-butyl-a-phenyl nitrone and f-butyl nitrile oxide to produce substituted pyrroles, dihydroisoxazoles, and isoxazoles respectively." 2/3-Vinyl-franwoctahydro-l,3-benzoxazine (43) undergoes 1,3-dipolar cycloaddition with nitrile oxides with high diastereoselectivity (90% de) (Scheme IS)." " ... [Pg.460]

One of the early examples demonstrating the efficiency of this chemistry was the [3+4] cycloaddition reaction of diazoglutaconate 42 with cyclopentadiene, in which the endo-isomer 43 is exclusively formed in 98% yield (Eq. 5) [73]. The intermediacy of a cis-divinylcyclopropane is consistent with the stereochemical outcome because it would rearrange to the endo-product. Indeed in the case of more highly functionalized vinyl-diazoacetates, the ds-divinylcyclopropane was isolable, in which elevated temperatures were required for the Cope rearrangement [73]. [Pg.313]

The 1,2,4-diazaarsoles are colorless oils or crystals. The unsubstituted compound is deprotonated by butyllithium and subsequently alkylated or acylated at N-1 <86TL2957>. The 1-acyl derivatives (9) (R = Me, Ph) readily undergo a regiospecific cycloaddition of nitrones, nitrile oxides and diazoacetic esters (Scheme 1). The cycloaddition of diphenyl nitrile imine is more general in respect to the 1-substituent (R = H, Me, Ph, COMe). The cycloreversion of the adduct (10) at higher temperatures provides an in situ access to the 1,3-diphenyl diazaarsole (11) which immediately enters another cycloaddition (Scheme 2) <86TL2957>. [Pg.821]

Another route is based on the in situ generation of arsaalkenes (E = C02Et, CONMe2, CMe =CH—COjMe) and their cycloaddition to ethyl diazoacetate (Equation (3)) <89TL349, 90TL1147,... [Pg.822]

Harwood and co-workers (105) utihzed a phenyloxazine-3-one as a chiral derived template for cycloaddition (Scheme 4.50). An oxazinone template can be formed from phenylglycinol as the template precursor. The diazoamide needed for cycloaddition was generated by addition of diazomalonyl chloride, trimethyl-dioxane-4-one, or succinimidyl diazoacetate, providing the ester, acetyl, or hydrogen R group of the diazoamide 198. After addition of rhodium acetate, A-methylmaleimide was used as the dipolarophile to provide a product that predominantly adds from the less hindered a-face of the template in an endo fashion. The cycloaddition also provided some of the adduct that approaches from the p-face as well. p-Face addition also occurred with complete exo-selectivity. Mono- and disubstituted acetylenic compounds were added as well, providing similar cycloadducts. [Pg.286]

The history of cycloaddition chemistry using aliphatic diazo compounds began in the 1890s when Buchner (1) and von Pechmann (2) reported that ethyl diazoacetate and diazomethane underwent cycloaddition across carbon-carbon multiple bonds. Ever since that time, diazo compounds have occupied a major place in [3 +2]-cycloaddition chemistry (3,4). For a long time, diazo compounds, as well as organic azides, have been one of the more synthetically useful classes of 1,3-dipoles. No doubt this was because many different mono- and disubstituted diazo compounds could be prepared (Scheme 8.1) and isolated in pure form, in contrast to other 1,3-dipoles that are typically generated as transient species. [Pg.540]

Other novel diazo compounds that have been subjected to 1,3-dipolar cycloaddition with activated alkenes, and that give unusually functionalized pyrazolines (Scheme 8.7), include l-diazo-3-trimethylsilylpropan-2-one (20) (49), 2-diazo-methyl-4(57/)-furanones (21) (50), methyl 2-diazo-5-methylanilino-5-oxopentano-ate (22) (51), 2-(acylamino)-2-diazoacetates (23) (51), ethyl 2-diazo-4,4,4-trichloro-3-(ethoxycarbonylamino)butyrate (24) (52), and diazopropyne (53). [Pg.546]

Diazo compounds also undergo cycloaddition with fullerenes [for reviews, see (104),(105)]. These reactions are HOMO(dipole)-LUMO(fullerene) controlled. The initial A -pyrazoline 42 can only be isolated from the reaction of diazomethane with [60]fullerene (106) (Scheme 8.12) or higher substituted derivatives of Ceo (107). Loss of N2 from the thermally labile 42 resulted in the formation of the 6,5-open 1,2-methanofullerene (43) (106). On the other hand, photolysis produced a 4 3 mixture of 43 and the 6,6-closed methanofullerene (44) (108). The three isomeric pyrazolines obtained from the reaction of [70]fullerene and diazomethane behaved analogously (109). With all other diazo compounds so far explored, no pyrazoline ring was isolated and instead the methanofullerenes were obtained directly. As a typical example, the reaction of Cgo with ethyl diazoacetate yielded a mixture of two 6,5-open diastereoisomers 45 and 46 as well as the 6,6-closed adduct 47 (110). In contrast to the parent compound 43, the ester-substituted structures 45 and 46, which are formed under kinetic control, could be thermally isomerized into 47. The fomation of multiple CPh2 adducts from the reaction of Ceo and diazodiphenylmethane was also observed (111). The mechanistic pathway that involves the extrusion of N2 from pyrazolino-fused [60]fullerenes has been investigated using theoretical methods (112). [Pg.552]

In the context of stereoselective organic synthesis, diastereofacial-selective cycloadditions of diazoalkanes and diazoacetates with functionalized alkenes has attracted some attention. 3,4-Disubstituted cyclobutenes were studied as dipolar-ophiles by the groups of Gandolfi and co-workers (113) and Martin and co-workers (114). The transition state structures of the cycloaddition of diazomethane with cis-3,4-dimethylcyclobutene was investigated theoretically by DPT methods (113a). [Pg.552]


See other pages where Diazoacetates cycloaddition is mentioned: [Pg.132]    [Pg.132]    [Pg.36]    [Pg.150]    [Pg.4]    [Pg.10]    [Pg.136]    [Pg.117]    [Pg.180]    [Pg.116]    [Pg.166]    [Pg.192]    [Pg.209]    [Pg.212]    [Pg.360]    [Pg.119]    [Pg.122]    [Pg.252]    [Pg.284]    [Pg.784]    [Pg.797]    [Pg.541]   
See also in sourсe #XX -- [ Pg.460 ]

See also in sourсe #XX -- [ Pg.460 ]

See also in sourсe #XX -- [ Pg.98 , Pg.99 , Pg.460 , Pg.515 ]




SEARCH



Diazoacetate

Diazoacetates

Diazoacetates, cycloadditions

Diazoacetates, cycloadditions

Diazoacetic

© 2024 chempedia.info