Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Di- malonic

The enthalpies and entropies of formation of mono-mandelato-complexes have been determined and, in comparison with other hydroxycarboxylic acid complexes, the enthalpy order of stabilization is lactate > a-hydroxyiso-butyrate mandelate > glycolate, whereas the entropy order of stabilization is glycolate > a-hydroxyisobutyrate > mandelate > lactate. The stability constants and enthalpy of formation of mono- and di-malonate complexes have also been measured.The mono-1,1-cyclopentanedicarboxylato-complexes are less stable than the corresponding malonate species. [Pg.458]

Reaction XLVII. Condensation of an Ester with itself by the action of Iodine on its Sodio-derivative. (B., 23, R., 141 A., 201, 144 266, 88.) When iodine, usually in ethereal solution, acts on the sodio-derivatives of esters, such as malonic or acetoacetic esters, the metal is eliminated, and higher dibasic esters are obtained. As will be seen, the reaction is especially useful for preparing cyclo-paraffins by acting with iodine (or bromine) upon disodio-methylene- and disodio-ethylene-, etc., di-malonic esters. [Pg.149]

Substitution Derivatives of Ethyl Malonate, Ethyl malonate resembles ethyl acetoacetate in that it gives rise to mono- and di-substituted derivatives in precisely similar circumstances. Thus when ethanolic solutions of ethyl malonate and of sodium ethoxide are mixed, the sodium derivative (A) of the enol form is produced in solution. On boiling this solution with an alkyl halide, e.g, methyl iodide, the methyl derivative (B) of the keto form is obtained. When this is treated again in ethanolic solution with sodium ethoxide, the... [Pg.275]

It follows therefore that ethyl malonate can be used (just as ethyl aceto- acetate) to prepare any mono or di-substituted acetic acid the limitations are identical, namely the substituents must necessarily be alkyl groups (or aryl-alkyl groups such as CjHjCHj), and tri-substituted acetic acids cannot be prepared. Ethyl malonate undergoes no reaction equivalent to the ketonic hydrolysis of ethyl acetoacetate, and the concentration of the alkali used for the hydrolysis is therefore not important. [Pg.276]

Ethane tetracarboxylic ethyl ester can be regarded as composed of two malonic ester residues, each acting as a mono-alkyl substituent to the other. The two remaining hydrogen atoms therefore still retain acidic properties, and consequently the ester gives with sodium ethoxide a di-sodium derivative. [Pg.277]

Successful results have been obtained (Renfrew and Chaney, 1946) with ethyl formate methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec.-butyl and iso-amyl acetat ethyleneglycol diacetate ethyl monochloro- and trichloro-acetates methyl, n-propyl, n-octyl and n-dodecyl propionates ethyl butyrate n-butyl and n-amyl valerates ethyl laurate ethyl lactate ethyl acetoacetate diethyl carbonate dimethyl and diethyl oxalates diethyl malonate diethyl adipate di-n-butyl tartrate ethyl phenylacetate methyl and ethyl benzoates methyl and ethyl salicylates diethyl and di-n-butyl phthalates. The method fails for vinyl acetate, ieri.-butyl acetate, n-octadecyl propionate, ethyl and >i-butyl stearate, phenyl, benzyl- and guaicol-acetate, methyl and ethyl cinnamate, diethyl sulphate and ethyl p-aminobenzoate. [Pg.393]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Active methylene or methine compounds, to which two EWGs such as carbonyl, alko.xycarbonyl, formyl, cyano, nitro, and sulfonyl groups are attached, react with butadiene smoothly and their acidic hydrogens are displaced with the 2,7-octadienyl group to give mono- and disubstituted compounds[59]. 3-Substituted 1,7-octadienes are obtained as minor products. The reaction is earned out with a /3-keto ester, /9-diketone, malonate, Q-formyl ketones, a-cyano and Q-nitro esters, cya noacetamide, and phenylsulfonylacetate. Di(octadienyl)malonate (61) obtained by this reaction is converted into an... [Pg.432]

Hydrosilylation of I-vinyl-1-cyclohexene (77) proceeds stereoselectively to give the (Z)-l-ethylidene-2-silylcyclohexane 78, which is converted into (Z)-2-ethylidenecyclohe.xanol (79)[74]. Hydrosilylation of cyclopentadiene affords the 3-silylated 1-cyclopentene 80. which is an allylic silane and used for further transformations[75.75a]. Cyclization of the 1,3,8, lO-undecatetraene system in the di(2.4-pentadienyl)malonate 69 via hydrosilylation gives the cyclopentane derivative 81. which corresponds to 2.6-octadienylsilanc[l8,76]. [Pg.435]

Unstrained difluorotetramethyldisilane (84) gives the 1 1 adduct 85 as the main product and the 1 2 adduct 86 as a minor product[78,79]. On the other hand, the dimerization and double silylation of conjugated dienes with (Me3Si)2 catalyzed by PdCl2(PhCN)2 take place at 90" C[80]. Pd(dba)2 without phosphine is an active catalyst for the reaction, which proceeds in DMF to give 87 at room temperature[81], A five-membered ring is formed by the application of the reaction to the di-(2,4-pentadienyl)malonate (69)[82]. [Pg.436]

PEROXIDES AND PEROXIDE COMPOUNDS - ORGANIC PEROXIDES] (Vol 18) Di-p-methylbenzyl malonate... [Pg.323]

N-Alkylations, especially of oxo-di- and tetra-hydro derivatives, e.g. (28)->(29), have been carried out readily using a variety of reagents such as (usual) alkyl halide/alkali, alkyl sulfate/alkali, alkyl halide, tosylate or sulfate/NaH, trialkyloxonium fluoroborate and other Meerwein-type reagents, alcohols/DCCI, diazoalkanes, alkyl carbonates, oxalates or malon-ates, oxosulfonium ylides, DMF dimethyl acetal, and triethyl orthoformate/AcjO. Also used have been alkyl halide/lithium diisopropylamide and in one case benzyl chloride on the thallium derivative. In neutral conditions 8-alkylation is observed and preparation of some 8-nucleosides has also been reported (78JOC828, 77JOC997, 72JOC3975, 72JOC3980). [Pg.206]

Bromophenol blue (3.0...4.6) aliphatic carboxylic acids [225 — 228] malonic and lactic acids [229] palmitic and lactic acids [230] malonic, glycolic, malic, citric, tartaric, ketoglutaric, galacturonic and oxalic acids [196] dicarboxylic acids, succinic acid [231] indoleacetic acid, trichloroacetic acid [232] palmitic acid, palmityl- and stearyllactic acid [223] benzoic, sorbic and salicylic acid [234] metabolites of ascorbic acid [235] chloropropionic acid [236] oligogalacturonic acids [237] amino acids, hydrocarbons, mono-, di- and triglycerides [238] xylobiose, xylose, glucose and derivatives [239] sugar alcohols [91] toxaphene [240]... [Pg.45]

The addition of nucleophiles to cyclic fluoroolefins has been reviewed by Park et al. [2 ]. The reaction with alcohols proceeds by addition-elimination to yield the cyclic vinylic ether, as illustrated by tlie reaction of l,2-dichloro-3,3-di-fluorocyclopropene Further reaction results in cyclopropane ring opening at the bond opposite the difluoromethylene carbon to give preferentially the methyl and ortho esters of (Z)-3-chloro-2-fluoroacrylic acid and a small amount of dimethyl malonate [29] (equation 8). [Pg.731]

It has also been stated that malonic acid, benzaldehyde, and ammonia can react to form tribenzaldiiminemalonic acid which under the action of hydrochloric acid is transformed into 6-oxo-2,4-di-phenyltetrahydro-l,3-oxazine (20). This is the only known representative of the 6-oxotetrahydro-l,3-oxazines. [Pg.322]

A third mechanism of protodeboronation has been detected in the reaction of benzeneboronic acids with water at pH 2-6.7625. In addition to the acid-catalysed reaction described above, a reaction whose rate depended specifically on the concentration of hydroxide ion was found. In a preliminary investigation with aqueous malonate buffers (pH 6.7) at 90 °C, 2-, 4-, and 2,6-di-methoxybenzeneboronic acids underwent deboronation and followed first-order kinetics. A secondary reaction produced an impurity which catalysed the deboronation, but this was unimportant during the initial portions of the kinetic runs. [Pg.294]

A gas ehromatographic analysis on the produet by the submitter, using an 0.3 x 80 cm. column packed with 10% silicone rubber (SE-30) supported on acid-washed, 60-80 mesh Chromasorb P at 80°, exhibited a single peak. The retention times of di-ter(-butyl malonate, di-fert-butyl diazomalonate, and p-toluenesulfonyl azide were 2, 6, and 9 minutes, respectively. The purity of the product obtained by the checkers was estimated from proton magnetic resonance spectra to be ca. 94%, the remainder being di-tert-butyl malonate. [Pg.35]

The diazo transfer reaction between p-toluenesulfonyl azide and active methylene compounds is a useful synthetic method for the preparation of a-diazo carbonyl compounds. However, the reaction of di-tert-butyl malonate and p-toluenesulfonyl azide to form di-tert-butyl diazomalonate proceeded to the extent of only 47% after 4 weeks with the usual procedure." The present procedure, which utilizes a two-phase medium and methyltri-n-octylammonium chloride (Aliquat 336) as phase-transfer catalyst, effects this same diazo transfer in 2 hours and has the additional advantage of avoiding the use of anhydrous solvents. This procedure has been employed for the preparation of diazoacetoacetates, diazoacetates, and diazomalonates (Table I). Ethyl and ten-butyl acetoacetate are converted to the corresponding a-diazoacetoacetates with saturated sodium carbonate as the aqueous phase. When aqueous sodium hydroxide is used with the acetoace-tates, the initially formed a-diazoacetoacetates undergo deacylation to the diazoacetates. Methyl esters are not suitable substrates, since they are too easily saponified under these conditions. [Pg.35]

Di-fcr(-butyl diazomalonate Malonic acid, diazo-, di-(erf-butyl ester (8) Propanedioic acid, diazo-, bis(l,l-dimethylethyl)ester (9) (35207-75-1)... [Pg.36]

Di-terf-butyl malonate, 59, 66 Di-tert-butyl peroxide, 55, 61... [Pg.115]


See other pages where Di- malonic is mentioned: [Pg.8]    [Pg.2743]    [Pg.8]    [Pg.2743]    [Pg.30]    [Pg.275]    [Pg.329]    [Pg.434]    [Pg.437]    [Pg.804]    [Pg.900]    [Pg.1261]    [Pg.465]    [Pg.406]    [Pg.393]    [Pg.289]    [Pg.281]    [Pg.290]    [Pg.155]    [Pg.900]    [Pg.95]    [Pg.79]    [Pg.1627]    [Pg.123]    [Pg.133]    [Pg.98]    [Pg.34]   


SEARCH



Di-tert-butyl malonates

© 2024 chempedia.info