Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Device luminescent

Device Luminescence (Cd/m2) At 20 mA/ cm2 Operating Voltage (V) External quantum efficiency (%) ... [Pg.31]

Bioluminescence was measured by a chemi-luminescence detector or our newly developed onsite monitoring system using a digital camera. The data were transferred to a (mobile) PC machine with a snaart media card device. Luminescent intensity was numerated by black and white scale using Scionimage soft. [Pg.438]

V and 1 GHz, respectively. A ne v nonconjugated polymer electroluminescent material, including stilbene derivatives, vas patented [19]. The preparation process for this electroluminescent material involved monomer synthesis and polymer synthesis. The author suggested that this electroluminescent material can be used in electroluminescent devices, luminescent devices, and so on. [Pg.164]

The layer width is taken from the relation d > 1,5 dg, where dg - thickness of a gas discharge gap. The employment of a resistive layer instead of electrode profiling can significantly simplify the device manufacture. The UV radiation is efficiently converted into a visible one by a number of photo-luminophors, e.g. Zn2Si04 Mn. For stroboscopic registration of fast-proceeding processes the luminophors with short period of luminescence are used, e.g anthracene etc. [Pg.540]

The picture presented above for confinement of the excitons within the device is for the EM layer sandwiched between the HTL and ETL. The EM need not be a discrete layer in the OLED, however, for exciton confinement to occur. Alternatively, the EM can consist of a luminescent molecule doped (- 1%) into a polymeric or molecular host material (40,41,54,55). So long as the energy gap (or band gap) of the host is higher than that of the EM dopant, excitons will be effectively trapped or confined on the dopant molecules leading to improved EL efficiency. An example of such a dopant-based device... [Pg.243]

Enclosure also changes the redox properties of a compound, its color, and other physical properties (1,2). On this basis nonlinear optical materials, luminescence markers, controlled light switches, and other high-tech devices might be designed and prepared (15,17,137). [Pg.75]

In optoelectronic materials and devices, it is the luminescence properties that are of practical importance. [Pg.151]

Nonstoichiometric oxide phases are of great importance in semiconductor devices, in heterogeneous catalysis and in understanding photoelectric, thermoelectric, magnetic and diffusional properties of solids. They have been used in thermistors, photoelectric cells, rectifiers, transistors, phosphors, luminescent materials and computer components (ferrites, etc.). They are cmcially implicated in reactions at electrode surfaces, the performance of batteries, the tarnishing and corrosion of metals, and many other reactions of significance in catalysis. ... [Pg.644]

The utility and importance of multi-layer device structures was demonstrated in the first report of oiganic molecular LEDs [7]. Since then, their use has been widespread in both organic molecular and polymer LEDs [45, 46], The details of the operating principles of many multi-layer structures continue to be investigated [47—49], The relative importance of charge carrier blocking versus improved carrier transport of the additional, non-luminescent layers is often unclear. The dramatic improvements in diode performance and, in many cases, device lifetime make a detailed understanding of multi-layer device physics essential. [Pg.191]

Recent work with multi-layer polymer LEDs has achieved impressive results and highlights the importance of multi-layer structures [46]. Single-layer, two-layer and three-layer devices were fabricated using a soluble PPV-based polymer as the luminescent layer. The external quantum efficiencies of the single-layer, two-layer, and three-layer devices were 0.08%, 0.55%, and 1%, respectively, with luminous efficiencies of about 0.5 hn/W, 3 lm/W, and 6 lm/W. These results clearly demonstrate improvement in the recombination current because of the increase in quantum efficiency. The corresponding increase in luminous efficiency demonstrates that the improvement in recombination efficiency was achieved without a significant increase in the operating bias. [Pg.194]

The electroluminescence spectra of the single-layer devices are depicted in Figure 16-40. For all these OPV5s, EL spectra coincided with the solid-state photoluminescence spectra, indicating that the same excited states are involved in both PL and EL. The broad luminescence spectrum for Ooct-OPV5-CN" is attributed to excimer emission (Section 16.3.1.4). [Pg.314]

The composition of the copolymer determines its electroluminescence efficiency. Optimal efficiency (0.3%) was achieved in system 34 when the feed ratio of monomer 4 to monomer 34 was 9 1. This represents a 30-fold improvement in luminescence efficiency relative to PPV in the same device configuration (AlALOj/polymer/Al) 58, 62. Copolymer 33 has found uses as waveguides and... [Pg.335]

The possibility of controlling ihc morphological and structural order in the solid is therefore a fundamental requirement for the control and reproducibility of the emission properties of a luminescent material within an organic light emitting diode (OLED) device. [Pg.420]

In electroluminescence devices (LEDs) ionized traps form space charges, which govern the charge carrier injection from metal electrodes into the active material [21]. The same states that trap charge carriers may also act as a recombination center for the non-radiative decay of excitons. Therefore, the luminescence efficiency as well as charge earner transport in LEDs are influenced by traps. Both factors determine the quantum efficiency of LEDs. [Pg.468]

Polynuclear dendrimer complexes of this type can undergo redox reactions at the metal centre and have luminescent properties. They have been proposed as molecular photochemical devices, although no practical examples have yet been produced. [Pg.136]

Recent Uses of Solid-Surface Luminescence Analysis in Environmental Analysis. Vo-Dinh and coworkers have shown very effectively how solid-surface luminescence techniques can be used for environmentally important samples (17-22). RTF has been used for the screening of ambient air particulate samples (17,18). In addition, RTF has been employed in conjunction with a ranking index to characterize polynuclear aromatic pollutants in environmental samples (19). A unique application of RTF reported recently is a personal dosimeter badge based on molecular diffusion and direct detection by RTF of polynuclear aromatic pollutants (20). The dosimeter is a pen-size device that does not require sample extraction prior to analysis. [Pg.157]

As just mentioned, phosphorus porphyrins have unique photochemical properties. Their photophysics is also interesting. Emitter-quencher assemblies based on porphyrin building blocks have attracted attention due to their potential to serve as models in photosynthetic research (see [90] for an example) or for the development of photoswitches that could be used for the fabrication of molecular electronic/optical devices. In this context, Maiya and coworkers constructed a P(VI) porphyrin system 59b with two switchable azobenzene groups positioned in the apical positions of the pseudo-octahedral phosphorus atom [92]. Photoswitch ability (luminescence on/off) was demonstrated as... [Pg.30]


See other pages where Device luminescent is mentioned: [Pg.384]    [Pg.137]    [Pg.355]    [Pg.384]    [Pg.137]    [Pg.355]    [Pg.244]    [Pg.292]    [Pg.293]    [Pg.430]    [Pg.21]    [Pg.444]    [Pg.276]    [Pg.56]    [Pg.219]    [Pg.225]    [Pg.318]    [Pg.340]    [Pg.372]    [Pg.503]    [Pg.504]    [Pg.531]    [Pg.548]    [Pg.605]    [Pg.619]    [Pg.625]    [Pg.626]    [Pg.254]    [Pg.3]    [Pg.258]    [Pg.45]    [Pg.108]    [Pg.423]    [Pg.4]    [Pg.196]    [Pg.197]    [Pg.303]   
See also in sourсe #XX -- [ Pg.371 ]




SEARCH



Luminescence devices

© 2024 chempedia.info