Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Determining Reference Values

Nonparametric, parametric, and bootstrap methods are used to determme reference intervals. [Pg.437]

This method consists essentially of cutting off a specified percentage of the values from each tail of the reference distribution. Tliree techniques may be used  [Pg.437]

TABLE 16-3 Nonparametric Confidence Intervals of Reference Limits  [Pg.438]

Sample Size Rank Numbers Sample Size Rank Numbers  [Pg.438]

A mathematical function may be fitted to the reference distribution, The percentiles are then determined using the fitted function. [Pg.438]


It is often claimed that the analytical quality should be better when determining reference values than when producing routine values. This may be true for accuracy aU measures should be taken to eliminate bias. The question of imprecision is more difficult because it depends partly on the intended use of the reference values. Increases in analytical random variation result in widening of the reference intervals For some special uses of reference values, the narrower reference interval obtained by a more precise analytical method may be appropriate. However, this is usually not true... [Pg.432]

Determination Reference value Manual techniques Automated techniques ... [Pg.147]

Determination Reference value Result (SD) Reference value Result (SD)... [Pg.147]

The basic representation of a measurement itself in terms of the actual units of measure is often referred to as the raw form. For measures of performance, the term raw score is frequently applied. Generally, some form of assessment (i.e., judgment or interpretation) is typically required. Assessments may be applied to (or, viewed from a different perspective, may require) either a single measure of groups of them. Subjective assessments are frequently made that are based on the practitioner s familiarity with values for a given parameter in a particular context. However, due to the large number of parameters and the amount of experience that would be required to gain a sufficient level of familiarity, a more formal and objective realization of the process that takes place in subjective assessments is often employed. This process combines the measured value with objectively determined reference values to obtain new metrics, or scores, that facilitate one or more steps in the assessment process. [Pg.1195]

Spectroscopically determined values of P vai y, but they aie usually around —2.4 eV. In the section on resonance stabilization, we saw that thermodynamic measurements of the total resonance stabilization of butadiene yield 11 and 29 kJ mol according to the reference standard chosen. Calculate the delocalization energy of buta-1,3-diene in units of p. Determine two values for the size of the energy unit p from the thermochemical estimates given. Do these agree well or poorly with the spectroscopic values ... [Pg.230]

In determining the values of Ka use is made of the pronounced shift of the UV-vis absorption spectrum of 2.4 upon coordination to the catalytically active ions as is illustrated in Figure 2.4 ". The occurrence of an isosbestic point can be regarded as an indication that there are only two species in solution that contribute to the absorption spectrum free and coordinated dienophile. The exact method of determination of the equilibrium constants is described extensively in reference 75 and is summarised in the experimental section. Since equilibrium constants and rate constants depend on the ionic strength, from this point onward, all measurements have been performed at constant ionic strength of 2.00 M usir potassium nitrate as background electrolyte . [Pg.58]

The dimensionless K. is regarded as a function of system T and P only and not of phase compositions. It must be exfjerimentally determined. Reference 64 provides charts of R (T,P) for a number of paraffinic hydrocarbons. K. is found to increase with an increase in system T and decrease with an increase in P. Away from the critical point, it is invariably assumed that the K, values of component i are independent of the other components present in the system. In the absence of experimental data, caution must be exercised in the use of K-factor charts for a given application. The term distribution coefficient is also used in the context of a solute (solid or liquid) distributed between two immiscible liquid phases yj and x. are then the equilibrium mole fractions of solute i in each liquid phase. [Pg.350]

Alcohol sulfates commonly have free alcohol and electrolytes as impurities. Other hydrophobic impurities can also be present. A method suitable for the purification of surfactants has been proposed by Rosen [120]. Consequently, commercial products have CMCs that deviate from the accepted reference values. This was demonstrated by Vijayendran [121] who studied several commercial sodium lauryl sulfates of high purity. The CMC was determined both by the conductimetric method and by the surface tension method. The values found were similar for both methods but while three samples gave CMC values of 7.9, 7.8, and 7.4 mM, close to the standard range of 8.0-8.2 mM, three other samples gave values of 4.1, 3.1, and 1.7 mM. The sample with a CMC of 7.9 mM was found to have a CMC of 8.0 mM with no detectable surface tension minima after purification and recrystallization. This procedure failed in all other cases. [Pg.250]

Values of p can be determined, in principle, from any phase equilibrium data. A small table of p 2 values is available in reference (2). However, one of the most straightforward ways of determining pf values is to fit phase equilibrium data for solvent sorption in concentrated polymer solutions. To do this, equations (2) and (13) are combined to solve for p utilizing experimental partial pressure data. [Pg.191]

Defining a reference value for the SHE makes it possible to determine E ° values of all other redox half-reactions. As an example. Figure 19-14 shows a cell in which a standard hydrogen electrode is connected to a copper electrode in contact with a 1.00 M solution of C U . Measurements on this cell show that the SHE is at higher electrical potential than the copper electrode, indicating that electrons flow from the SHE to the Cu... [Pg.1383]

The enantiomeric excess (ee) of the hydrogenated products was determined either by polarimetry, GLC equipped with a chiral column or H-NMR with a chiral shift reagent. Methyl lactate and methyl 3-hydroxybutanoate, obtained from 1 and 2, respectively, were analized polarimetry using a Perkin-Elmer 243B instrument. The reference values of [a]o(neat) were +8.4° for (R)-methyl pyruvate and -22.95° for methyl 3-hydroxybutcinoate. Before GLC analysis, i-butyl 5-hydroxyhexanoate, methyl 5-hydroxyhexanoate, and n-butyl 5-hydroxyhexanoate, obtained from 1, 5, and 6, respectively, were converted to the pentanoyl esters, methyl 3-hydroxybutanoate was converted to the acetyl ester, and methyl 4-methyl-3-hydroxybutanoate obtained from 2 was converted the ester of (+)-a-methyl-a-(trifluoromethyl)phenyl acetic acid (MTPA). [Pg.239]

Identification of sources of analytical bias in method development and method validation is another very important application of reference materials in geochemical laboratories. USGS applied simplex optimization in establishing the best measurement conditions when the ICP-AES method was introduced as a substitute for AAS in the rapid rock procedure for major oxide determinations (Leary et al. 1982). The optimized measurement parameters were then validated by analyzing a number of USGS rock reference samples for which reference values had been established first by classical analyses. Similar optimization of an ICP-AES procedure for a number of trace elements was validated by the analysis of U S G S manganese nodule P-i (Montaser et al. 1984). [Pg.224]

In their broadest application, CRMs are used as controls to verify in a direct comparison the accuracy of the results of a particular measurement parallel with this verification, traceability may be demonstrated. Under conditions demonstrated to be equal for sample and CRM, agreement of results, e.g. as defined above, is proof. Since such possibilities for a direct comparison between samples and a CRM are rare, the user s claims for accuracy and traceability have to be made by inference. Naturally, the use of several CRMs of similar matrix but different analyte content will strengthen the user s inference. Even so, the user stiU has to assess and account for all uncertainties in this comparison of results. These imcertainty calculations must include beyond the common analytical uncertainty budget (i) a component that reflects material matrix effects, (2) a component that reflects differences in the amount of substance determined, (3) the uncertainty of the certified or reference value(s) used, and 4) the uncertainty of the comparison itself AU this information certainly supports the assertion of accuracy in relation to the CRM. However, the requirement of the imbroken chain of comparisons wiU not be formally fulfilled. [Pg.252]

Matrix Components The term matrix component refers to the constituents in the material aside from those being determined, which are denoted as analyte. Clearly, what is a matrix component to one analyst may be an analyte to another. Thus, in one hand for the case of analyses for elemental content, components such as dietary fibre, ash, protein, fat, and carbohydrate are classified as matrix components and are used to define the nature of the material. On the other hand, reference values are required to monitor the quality of determinations of these nutritionally significant matrix components. Hence, there is a challenging immediate need for certified values for dietary fibre, ash, protein, fat, and carbohydrate. Concomitantly, these values must be accompanied by scientifically sound definitions (e.g. total soluble dietary fibre, total sulpha-ted ash, total unsaturated fat, polyunsaturated fat, individual lipids, simple sugars, and complex carbohydrates). [Pg.287]


See other pages where Determining Reference Values is mentioned: [Pg.2118]    [Pg.571]    [Pg.50]    [Pg.437]    [Pg.803]    [Pg.872]    [Pg.1090]    [Pg.2118]    [Pg.571]    [Pg.50]    [Pg.437]    [Pg.803]    [Pg.872]    [Pg.1090]    [Pg.469]    [Pg.189]    [Pg.269]    [Pg.454]    [Pg.242]    [Pg.871]    [Pg.1100]    [Pg.107]    [Pg.225]    [Pg.260]    [Pg.109]    [Pg.188]    [Pg.240]    [Pg.180]    [Pg.241]    [Pg.453]    [Pg.105]    [Pg.354]    [Pg.91]    [Pg.92]    [Pg.223]    [Pg.229]    [Pg.143]    [Pg.257]    [Pg.82]    [Pg.661]   


SEARCH



Determination of reference values

Reference determinant

Reference value

© 2024 chempedia.info