Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detector electrical conductivity

The detector is a transducer which may be either a katharometer (thermal conductivity transducer) or a flame ionization detector (electric conductance transducer). The difference between the values of a physical constant for any sample component and gas carrier is transformed, by the detector, into an electric signal proportional to the concentration of that component in the gas phase the components are thus sensed . [Pg.17]

Schematic diagram of a flame ionization detector. Ions and electrons formed in the flame provide an electrically conducting path between the flame at earth potential and an insulated cylindrical metal electrode at high potential. surrounding the flame the flow of current is monitored, amplified, and passed to the recording system. Schematic diagram of a flame ionization detector. Ions and electrons formed in the flame provide an electrically conducting path between the flame at earth potential and an insulated cylindrical metal electrode at high potential. surrounding the flame the flow of current is monitored, amplified, and passed to the recording system.
Ion chromatography (IC) is a relatively new technique pioneered by Small et al.25 and which employs in a novel manner some well-established principles of ion exchange and allows electrical conductance to be used for detection and quantitative determination of ions in solution after their separation. Since electrical conductance is a property common to all ionic species in solution, a conductivity detector clearly has the potential of being a universal monitor for all ionic species. [Pg.197]

It is appropriate to refer here to the development of non-suppressed ion chromatography. A simple chromatographic system for anions which uses a conductivity detector but requires no suppressor column has been described by Fritz and co-workers.28 The anions are separated on a column of macroporous anion exchange resin which has a very low capacity, so that only a very dilute solution (ca 10 4M) of an aromatic organic acid salt (e.g. sodium phthalate) is required as the eluant. The low conductance of the eluant eliminates the need for a suppressor column and the separated anions can be detected by electrical conductance. In general, however, non-suppressed ion chromatography is an order of magnitude less sensitive than the suppressed mode. [Pg.200]

Detectors. Although electrical conductance has been widely used for detecting ions in ion chromatography, the scope of the technique has been considerably extended by the use of other types of detector. It is convenient broadly to classify detectors into two series. [Pg.200]

The combustion of mixtures of hydrogen and air produces very few ions so that with only the carrier gas and hydrogen burning an essentially constant signal is obtained. When, however, carbon-containing compounds are present ionisation occurs and there is a large increase in the electrical conductivity of the flame. Because the sample is destroyed in the flame a stream-splitting device is employed when further examination of the eluate is necessary this device is inserted between the column and detector and allows the bulk of the sample to by-pass the detector. [Pg.242]

The electrical conductivity detector is probably the second most commonly used in LC. By its nature, it can only detect those substances that ionize and, consequently, is used frequently in the analysis of inorganic acids, bases and salts. It has also found particular use in the detection of those ionic materials that are frequently required in environmental studies and in biotechnology applications. The detection system is the simplest of all the detectors and consists only of two electrodes situated in a suitable detector cell. An example of an electrical conductivity detector sensing cell is shown in figure 13. [Pg.176]

The popularity of the UV detector, the electrical conductivity detector and the fluorescence detector motivated Schmidt and Scott (5,6) to develop a trifunctional detector that detected solutes by all three methods simultaneously in a single low volume cell. [Pg.189]

Chromatograms demonstrating the simultaneous use of all three detector functions are shown in figure 22. It is seen that the anthracene is clearly picked out from the mixture of aromatics by the fluorescence detector and the chloride ion, not shown at all by the UV adsorption or fluorescence detectors, clearly shown by the electrical conductivity detector. [Pg.190]

EC = electrical conductivity detector ECD = electron capture detector FPD = flame photometric detector GC = gas chromatography HPLC = high performance liquid chromatography NPD = nitrogen phosphorus detector TID = thermionic detector UV = ultraviolet spectroscopy... [Pg.180]

Atoms of metals are more interesting tiian hydrogen atoms, because they can form not only dimers Ag2, but also particles with larger number of atoms. What are the electric properties of these particles on surfaces of solids The answer to this question can be most easily obtained by using a semiconductor sensor which plays simultaneously the role of a sorbent target and is used as a detector of silver adatoms. The initial concentration of silver adatoms must be sufficiently small, so that growth of multiatomic aggregates of silver particles (clusters) could be traced by variation of an electric conductivity in time (after atomic beam was terminated), provided the assumption of small electric activity of clusters on a semiconductor surface [42] compared to that of atomic particles is true. [Pg.248]

The influence of other active components, such as 1, OH, H on a semiconductor sensor, with other conditions being the same, is comparable with the influence of atomic oxygen [50]. Contribution of N and OH is proportional to their relative contents (compared to that of atomic oxygen) in the atmosphere and may become essential at altitudes lower than 60 - 70 km. The use of selective detectors excludes the influence of atomic hydrogen. Studies of adsorption of water vapours on ZnO films [50] show that their influence is negligibly small at the film temperatures below 100°C. Variations of electric conductivity of the films under the influence of water vapours and of an atomic oxygen are comparable at the ratio of their concentrations [H20]/[0] = 10" . [Pg.257]

The ideal HPLC detector should have the same characteristics as those required for GC detectors, i.e. rapid and reproducible response to solutes, a wide range of linear response, high sensitivity and stability of operation. No truly universal HPLC detector has yet been developed but the two most widely applicable types are those based on the absorption of UV or visible radiation by the solute species and those which monitor refractive index differences between solutes dissolved in the mobile phase and the pure mobile phase. Other detectors which are more selective in their response rely on such solute properties as fluorescence, electrical conductivity, diffusion currents (amperometric) and radioactivity. The characteristics of the various types of detector are summarized in Table 4.14. [Pg.127]

A conductivity detector measures the electrical conductivity of the HPLC eluent stream and is amenable to low-level determination (ppm and ppb levels) of ionic components such as anions, metals, organic acids, and surfactants. It is the primary detection mode for ion chromatography. Manufacturers include Dionex, Alltech, Shimadzu, and Waters. [Pg.513]

Perhaps the most important of all electrochemical detection schemes currently in use is the electrical conductivity detector. This detector is specifically useful for ion exchange, or ion, chromatography in which the analyte is in ionic form. Such ions elute from the column and need to be detected as peaks on the recorder trace. [Pg.381]


See other pages where Detector electrical conductivity is mentioned: [Pg.1193]    [Pg.12]    [Pg.1193]    [Pg.12]    [Pg.272]    [Pg.403]    [Pg.390]    [Pg.370]    [Pg.198]    [Pg.73]    [Pg.127]    [Pg.298]    [Pg.157]    [Pg.176]    [Pg.177]    [Pg.178]    [Pg.178]    [Pg.178]    [Pg.180]    [Pg.190]    [Pg.309]    [Pg.80]    [Pg.81]    [Pg.92]    [Pg.234]    [Pg.342]    [Pg.371]    [Pg.298]    [Pg.198]    [Pg.363]    [Pg.69]    [Pg.36]    [Pg.483]    [Pg.336]    [Pg.458]    [Pg.102]    [Pg.362]    [Pg.17]   
See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Detector conductance

Detectors conductivity

© 2024 chempedia.info