Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge-coupled device detector

Bioluminescence detector Charge-coupled device Contactless-conductivity detector Capillary electrophoresis Capillary electrophoresis-Electrochemistry Collision-induced dissociation Chemiluminescence detector Sodium chlorate-nitrobenzene Commercial off-the-shelf (U.S. Army) Cold Regions Research and Development Center Croatian Mine Action Center Council of Scientific and Industrial Research,... [Pg.326]

The diffraction equipment used for the study of conducting polymers in no way differs fi-om that used for the study of conventional polymers. This short section does not cover the experimental methods in any technical detail, however, but merely presents some considerations about their applicability. Details can be found in the standard books on this topic [3-5]. Admittedly, these books are somewhat dated they do not, for instance, reflect the impact of computers on both automation of equipment and data evaluation. Another result of the ever-accelerating progress in microelectronics (still based on metals and inorganic semiconductors instead of polymers), is to be found in the field of x-ray detector systems linear photodiode array detectors, Charge-Coupled-Device area detectors and Image Plate detectors have all become available recently. [Pg.3]

Great progress has also been achieved in the field of low-level signal detection. Apart from new photomultipliers with an extended spectral sensivity range and large quantum efficiencies, new detection instruments have been developed such as image intensifiers, infrared detectors, charge-coupled devices (CCDs) or optical multichannel analyzers, which could move from classified military research into the open market. For many spectroscopic applications they prove to be extremely useful. [Pg.113]

Figure 1 (A) Afibre optic spectroscopy system with separate illumination and collection path is based on an excitation source, which is a laser or a white light source (reflectometry) or a monochromator filtered arc lamp (fluorescence). Optics couple the excitation light into the flexible probe. A probe collects the emitted light. Coupling optics adapt the numerical aperture of the probe to the spectrograph or filter system. An optical detector (charge coupled device (CCD), photodiode array, photomultiplier tube) is read out and digitized. (B) A fibre optic spectroscopy system with a probe that incorporates one optical fibre needs a dichroic beam splitter and well aligned optics to separate excitation and fluorescence light. Reproduced with permission of Optical Society of America Inc. from Greek LS, Schulze HG, Blades MW, Haynes CA, Klein K-F and Turner RFB (1998) Fiber-optic probes with improved excitation and collection efficiency for deep-UV Raman and resonance Raman spectroscopy. Applied Optics Z7 ). Figure 1 (A) Afibre optic spectroscopy system with separate illumination and collection path is based on an excitation source, which is a laser or a white light source (reflectometry) or a monochromator filtered arc lamp (fluorescence). Optics couple the excitation light into the flexible probe. A probe collects the emitted light. Coupling optics adapt the numerical aperture of the probe to the spectrograph or filter system. An optical detector (charge coupled device (CCD), photodiode array, photomultiplier tube) is read out and digitized. (B) A fibre optic spectroscopy system with a probe that incorporates one optical fibre needs a dichroic beam splitter and well aligned optics to separate excitation and fluorescence light. Reproduced with permission of Optical Society of America Inc. from Greek LS, Schulze HG, Blades MW, Haynes CA, Klein K-F and Turner RFB (1998) Fiber-optic probes with improved excitation and collection efficiency for deep-UV Raman and resonance Raman spectroscopy. Applied Optics Z7 ).
A more recent, and superior, type of detector, which also benefits from the multiplex advantage, is the charge-coupled device (CCD). The CCD, as used for spectroscopy, has been developed from the CCD detector used in a camcorder. [Pg.63]

An x-ray area detector can be used to collect the intensities of many reflections at a time. The crystal must be oriented in many different settings with respect to the incident beam but the detector needs to be positioned at only a few positions to collect all of the data. A charge coupled device (CCD) is used as the area detector on the Siemens SMART single crystal diffractometer system. The SMART detector consists of a flat 6-cm circular phosphorescent screen that converts x-ray photons to visible light photons. The screen is coupled to a tapered fiber optics bundle which is then coupled to a one inch by one inch square CCD chip. The CCD chip has 1024 x 1024 pixels each of which stores an electrical charge proportional to the number of... [Pg.376]

Sihcon charge coupled devices (CCDs), commonly used in soHd-state video cameras and in research appHcations, are being appHed to low light level spectroscopy appHcations. The main advantage of area array CCDs over linear photodiode detectors is the two-dimensional format, which provides simultaneous measurements of spatial and spectral data. [Pg.398]

The analytical capabilities of LIBS and LA-MIP-OES were recently noticeably improved by use of an advanced detection scheme based on an Echelle spectrometer combined with a high-sensitivity ICCD (intensified charge-coupled device) detector. [Pg.235]

The main detectors used in AES today are photomultiplier tubes (PMTs), photodiode arrays (PDAs), charge-coupled devices (CCDs), and vidicons, image dissectors, and charge-injection detectors (CIDs). An innovative CCD detector for AES has been described [147]. New developments are the array detector AES. With modem multichannel echelle spectral analysers it is possible to analyse any luminous event (flash, spark, laser-induced plasma, discharge) instantly. Considering the complexity of emission spectra, the importance of spectral resolution cannot be overemphasised. Table 8.25 shows some typical spectral emission lines of some common elements. Atomic plasma emission sources can act as chromatographic detectors, e.g. GC-AED (see Chapter 4). [Pg.614]

The spectroscopy system uses a dispersive element and a detector which is either a charge-coupled device (CCD) or a diode array. A computer is required for instrument control and for intensive data processing. [Pg.52]

Such detectors are frequently charge-coupled devices (CCD) known from digital cameras... [Pg.30]


See other pages where Charge-coupled device detector is mentioned: [Pg.463]    [Pg.96]    [Pg.80]    [Pg.414]    [Pg.182]    [Pg.188]    [Pg.4222]    [Pg.99]    [Pg.363]    [Pg.463]    [Pg.96]    [Pg.80]    [Pg.414]    [Pg.182]    [Pg.188]    [Pg.4222]    [Pg.99]    [Pg.363]    [Pg.1625]    [Pg.1979]    [Pg.2949]    [Pg.2963]    [Pg.194]    [Pg.208]    [Pg.421]    [Pg.422]    [Pg.424]    [Pg.424]    [Pg.425]    [Pg.425]    [Pg.428]    [Pg.432]    [Pg.390]    [Pg.432]    [Pg.53]    [Pg.224]    [Pg.258]    [Pg.41]    [Pg.130]    [Pg.132]    [Pg.304]    [Pg.531]    [Pg.18]    [Pg.287]    [Pg.81]    [Pg.529]    [Pg.165]    [Pg.243]   
See also in sourсe #XX -- [ Pg.247 ]

See also in sourсe #XX -- [ Pg.102 , Pg.102 ]

See also in sourсe #XX -- [ Pg.171 , Pg.387 ]




SEARCH



Charge coupling device

Charge-couple device

Charge-coupled detectors

Charge-coupled device

Charged coupled device

Detector coupling

Detector device)

Detectors charge

© 2024 chempedia.info