Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediate design-analysis

On the basis of this retrosynthetic analysis design a synthesis of N methyl 4 phenylpipendine (compound A where R = CH3 R = C6H5) Present your answer as a series of equations show ing all necessary reagents and isolated intermediates... [Pg.968]

Fault Tree Analysis. Fault trees represent a deductive approach to determining the causes contributing to a designated failure. The approach begins with the definition of a top or undesired event, and branches backward through intermediate events until the top event is defined in terms of basic events. A basic event is an event for which further development would not be useful for the purpose at hand. For example, for a quantitative fault tree, if a frequency or probabiUty for a failure can be deterrnined without further development of the failure logic, then there is no point to further development, and the event is regarded as basic. [Pg.473]

The cyclic sulfoximine 93a,b, a key intermediate in the synthesis of sulfoximine 94 designed as inhibitors of Escherichia Coli y-glutamyl synthetase, was synthesized stereoselectively (96BMC(6)1437, 98BMC(6)1935). X-ray analysis (99AX(C55)1598) of 93b was performed, elucidating the configuration. [Pg.82]

The retrosynthetic analysis presented in Scheme 6 (for 1, 2, and 16-19) focuses on these symmetry elements, and leads to the design of a strategy that utilizes the readily available enantiomers of xylose and tartaric acid as starting materials and/or chiral auxiliaries to secure optically active materials.14 Thus by following the indicated disconnections in Scheme 6, the initially generated key intermediates 16-19 can be traced to epoxide 23 (16,19 =>23),... [Pg.427]

In a separate set of experiments designed to follow the gas phase reactions of CHj-radicals with NO, CHj- radicals were generated by the thermal decomposition of azomethane, CHjN NCHj, at 980 °C. The CH3- radicals were subsequently allowed to react with themselves and with NO in a Knudsen cell that has been described previously [12]. Analysis of intermediates and products was again done by mass spectrometry, using the VIEMS. Calibration of the mass spectrometer with respect to CH,- radicals was carried out by introducing the products of azomethane decomposition directly into the high vacuum region of the instrument. [Pg.713]

This chapter contains a discussion of two intermediate level problems in chemical reactor design that indicate how the principles developed in previous chapters are applied in making preliminary design calculations for industrial scale units. The problems considered are the thermal cracking of propane in a tubular reactor and the production of phthalic anhydride in a fixed bed catalytic reactor. Space limitations preclude detailed case studies of these problems. In such studies one would systematically vary all relevant process parameters to arrive at an optimum reactor design. However, sufficient detail is provided within the illustrative problems to indicate the basic principles involved and to make it easy to extend the analysis to studies of other process variables. The conditions employed in these problems are not necessarily those used in current industrial practice, since the data are based on literature values that date back some years. [Pg.540]

Referring first of all to the reactions over 0.2% platinum/alumina (Table V) the major features of the product distributions may be explained by a simple reaction via an adsorbed C5 cyclic intermediate. For instance, if reaction had proceeded entirely by this path, 2-methylpentane-2-13C would have yielded 3-methylpentane labeled 100% in the 3-position (instead of 73.4%) and would have yielded n-hexane labeled 100% in the 2-position (instead of 90.2%). Similarly, 3-methylpentane-2-I3C would have yielded a 2-methylpentane labeled 50% in the methyl substituent (instead of 42.6%), and would have yielded n-hexane labeled 50% in the 1- and 3-positions (instead of 43.8 and 49% respectively). The other expectations are very easily assessed in a similar manner. On the whole, the data of Table V lead to the conclusion that some 80% or so of the reacting hydrocarbon reacts via a simple one step process via an adsorbed C5 cyclic intermediate. The departures from the distribution expected for this simple process are accounted for by the occurrence of bond shift processes. It is necessary to propose that more than one process (adsorbed C6 cyclic intermediate or bond shift) may occur within a single overall residence period on the catalyst Gault s analysis leads to the need for a maximum of three. The number of possible combinations is large, but limitations are imposed by the nature of the observed product distributions. If we designate a bond shift process by B, and passage via an adsorbed Cs cyclic intermediate by C, the required reaction paths are... [Pg.39]

The design and implementation of a portable fiber-optic cholinesterase biosensor for the detection and determination of pesticides carbaryl and dichlorvos was presented by Andreou81. The sensing bioactive material was a three-layer sandwich. The enzyme cholinesterase was immobilized on the outer layer, consisting of hydrophilic modified polyvinylidenefluoride membrane. The membrane was in contact with an intermediate sol-gel layer that incorporated bromocresol purple, deposited on an inner disk. The sensor operated in a static mode at room temperature and the rate of the inhibited reaction served as an analytical signal. This method was successfully applied to the direct analysis of natural water samples (detection and determination of these pesticides), without sample pretreatment, and since the biosensor setup is fully portable (in a small case), it is suitable for in-field use. [Pg.371]

In this contribution, the steady-state isotopic transient kinetic analysis-diffuse reflectance Fourier transform spectroscopy (SSITKA-DRIFTS) method provides further support to the conclusion that not only are infrared active formates likely intermediates in the water-gas shift (WGS) reaction, in agreement with the mechanism proposed by Shido and Iwasawa for Rh/ceria, but designing catalysts based on formate C-H bond weakening can lead to significantly higher... [Pg.365]


See other pages where Intermediate design-analysis is mentioned: [Pg.387]    [Pg.387]    [Pg.387]    [Pg.388]    [Pg.388]    [Pg.388]    [Pg.389]    [Pg.390]    [Pg.5]    [Pg.5]    [Pg.489]    [Pg.11]    [Pg.199]    [Pg.524]    [Pg.561]    [Pg.81]    [Pg.56]    [Pg.438]    [Pg.1070]    [Pg.193]    [Pg.134]    [Pg.11]    [Pg.136]    [Pg.104]    [Pg.556]    [Pg.1070]    [Pg.14]    [Pg.303]    [Pg.279]    [Pg.203]    [Pg.206]    [Pg.174]    [Pg.412]    [Pg.258]    [Pg.266]    [Pg.74]    [Pg.22]    [Pg.270]   
See also in sourсe #XX -- [ Pg.387 ]




SEARCH



Designer analysis

© 2024 chempedia.info