Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dependent Electrical Properties

Impedance spectroscopy (IS) is a versatile and powerfiil characteization technique for the investigation of frequency dependent electrical properties of materials and interfaces. It can be used to investigate the dynamics of boimd or mobile charge, both in the bulk and in interfacial regions of any kind of soUd or Uquid material with electronic, ionic, semiconducting, mixed electronic-ionic conductivity or even dielectric properties (Macdonald, 1987a). [Pg.1153]

Alloy selection depends on several factors, including electrical properties, alloy melting range, wetting characteristics, resistance to oxidation, mechanical and thermomechanical properties, formation of intermetaUics, and ionic migration characteristics (26). These properties determine whether a particular solder joint can meet the mechanical, thermal, chemical, and electrical demands placed on it. [Pg.532]

Some properties are not significantly dependent on cross-linking and remain nearly iavariant as cure progresses. These iaclude thermal conductivity, electrical properties, and low temperature britdeness. [Pg.236]

Antioxidants are used to retard the reaction of organic materials with atmospheric oxygen. Such reaction can cause degradation of the mechanical, aesthetic, and electrical properties of polymers loss of flavor and development of rancidity ia foods and an iacrease ia the viscosity, acidity, and formation of iasolubles ia lubricants. The need for antioxidants depends upon the chemical composition of the substrate and the conditions of exposure. Relatively high concentrations of antioxidants are used to stabilize polymers such as natural mbber and polyunsaturated oils. Saturated polymers have greater oxidative stabiUty and require relatively low concentrations of stabilizers. Specialized antioxidants which have been commercialized meet the needs of the iadustry by extending the useflil Hves of the many substrates produced under anticipated conditions of exposure. The sales of antioxidants ia the United States were approximately 730 million ia 1990 (1,2). [Pg.222]

Rotary atomisation produces the most uniform atomisation of any of the aforementioned techniques, and produces the smallest maximum particle sise. It is almost always used with electrostatics and at lower rotational speeds the electrostatics assist the atomisation. At higher rotational speeds the atomisation is principally mechanical in nature and does not depend on the electrical properties of the coating material. If the viscosity of a coating material is sufficiendy low that it can be deUvered to a rotary atomiser, the material can generally be atomised. The prime mover is usually an ak-driven turbine and, provided that the turbine has the requked power to accelerate the material to the angular velocity, Hquid-dow rates of up to 1000 cm /min can be atomised using an 8-cm diameter beU. [Pg.331]

The electrical-insulating and dielectric properties of the pure EPM/EPDM are excellent, but in compounds they are also strongly dependent on the proper choice of fillers. The electrical properties of vulcanizates are also good at high temperatures and after heat-aging. Because EPM/EPDM vulcanizates absorb Htde moisture, their good electrical properties suffer minimally when they are submerged in water. [Pg.506]

For a part to exhibit stmctural stiffness, flexural moduH should be above 2000 N/mm (290,000 psi). Notched l2od impact values should be deterrnined at different thicknesses. Some plastics exhibit different notch sensitivities. For example, PC, 3.2 mm thick, has a notched l2od impact of 800 J/m (15 fdbf/in.) which drops to 100 J/m (1.9 fflbf/in.) at 6.4-mm thickness. On the other hand, one bisphenol A phthalate-based polyarylate resin maintains a 250-J /m (4.7-fdbf/in.) notched l2od impact at both thicknesses. Toughness depends on the stmcture of the part under consideration as well as the plastic employed to make the part. Mechanical properties, like electrical properties, ate also subject to thermal and water-content changes. [Pg.265]

The bisphenol A-derived epoxy resins are most frequendy cured with anhydrides, aUphatic amines, or polyamides, depending on desired end properties. Some of the outstanding properties are superior electrical properties, chemical resistance, heat resistance, and adhesion. Conventional epoxy resins range from low viscosity Hquids to soHd resins. [Pg.363]

The electrical properties of polypropylene are very similar to those of high-density polyethylenes. In particular the power factor is critically dependent on the amount of catalyst residues in the polymer. Some typical properties are given in Table 11.3 but it should be noted that these properties are dependent on the antioxidant system employed as well as on the catalyst residues. [Pg.256]

The number of hardening agents used commercially is very large and the final choice will depend on the relative importance of economics, ease of handling, pot life, cure rates, dermatitic effects and the mechanical, chemical, thermal and electrical properties of the cured products. Since these will differ from application to application it is understandable that such a wide range of material is employed. [Pg.761]

The electrical properties will also depend on the above factors as well as on the test conditions, in particular temperature, test frequency and humidity. Table 26.12 quotes ranges for figures quoted in the literature for various electrical properties. [Pg.774]

A number of different resins are available and the ultimate choice will depend on the end use and proposed method of fabrication. For example, one resin will be recommended for maximum strength and fastest cures whilst another will have the best electrical properties. Some may be suitable for low-pressure laminating whilst others will require a moulding pressure of lOOOlbf/in (7 MPa). [Pg.830]

With particles, the contaminant concentration in the duct is determined by isokinetic sampling with subsequent laboratory analysis use of a calibrated direct reading instrument. If the concentration distribution in the duct is uneven, a complete survey of the concentration distribution with the corresponding duct velocities and cross-sectional area is required. National and ISO standards provide information on isokinetic sampling and velocity measurements. In the case of particles, the airborne emission differs from the total emission, for example in the case of granular particulate. The contaminant settling on surfaces depends on particle distribution, airflow rates, direction in the space, electrical properties of the surfaces and the material, and the amount of moisture or grease in the environment. [Pg.1018]

A role is also played by the temperature and frequency dependence of the photocurrent, the variable surface sensitivity at various parts of the cathode and the vector effect of polarized radiation [40]. All the detectors discussed below are electronic components whose electrical properties vary on irradiation. The effects depend on external (photocells, photomultipliers) or internal photo effects (photoelements, photodiodes). [Pg.24]


See other pages where Dependent Electrical Properties is mentioned: [Pg.253]    [Pg.259]    [Pg.1142]    [Pg.1142]    [Pg.628]    [Pg.139]    [Pg.253]    [Pg.259]    [Pg.1142]    [Pg.1142]    [Pg.628]    [Pg.139]    [Pg.2501]    [Pg.2772]    [Pg.435]    [Pg.207]    [Pg.365]    [Pg.320]    [Pg.500]    [Pg.209]    [Pg.2]    [Pg.155]    [Pg.448]    [Pg.54]    [Pg.572]    [Pg.313]    [Pg.346]    [Pg.492]    [Pg.269]    [Pg.236]    [Pg.88]    [Pg.2]    [Pg.570]    [Pg.674]    [Pg.235]    [Pg.252]    [Pg.47]    [Pg.114]    [Pg.159]    [Pg.252]    [Pg.295]    [Pg.410]    [Pg.546]   


SEARCH



© 2024 chempedia.info