Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density combustor

The resulting overall energy balance for the plant at nominal load conditions is shown in Table 3. The primary combustor operates at 760 kPa (7.5 atm) pressure the equivalence ratio is 0.9 the heat loss is about 3.5%. The channel operates in the subsonic mode, in a peak magnetic field of 6 T. AH critical electrical and gas dynamic operating parameters of the channel are within prescribed constraints the magnetic field and electrical loading are tailored to limit the maximum axial electrical field to 2 kV/m, the transverse current density to 0.9 A/cm , and the Hall parameter to 4. The diffuser pressure recovery factor is 0.6. [Pg.424]

In the model equations, A represents the cross sectional area of reactor, a is the mole fraction of combustor fuel gas, C is the molar concentration of component gas, Cp the heat capacity of insulation and F is the molar flow rate of feed. The AH denotes the heat of reaction, L is the reactor length, P is the reactor pressure, R is the gas constant, T represents the temperature of gas, U is the overall heat transfer coefficient, v represents velocity of gas, W is the reactor width, and z denotes the reactor distance from the inlet. The Greek letters, e is the void fraction of catalyst bed, p the molar density of gas, and rj is the stoichiometric coefficient of reaction. The subscript, c, cat, r, b and a represent the combustor, catalyst, reformer, the insulation, and ambient, respectively. The obtained PDE model is solved using Finite Difference Method (FDM). [Pg.631]

Table 1 gives the values of design and operating parameters of a scale model fluidized with air at ambient conditions which simulates the dynamics of an atmospheric fluidized bed combustor operating at 850°C. Fortunately, the linear dimensions of the model are much smaller, roughly one quarter those of the combustor. The particle density in the model must be much higher than the particle density in the combustor to maintain a constant value of the gas-to-solid density ratio. Note that the superficial velocity of the model differs from that of the combustor along with the spatial and temporal variables. [Pg.59]

When modelling a pressurized hot bed (Table 2) the ambient temperature model fluidized with air has dimensions very close to those of the pressurized combustor. If another gas is used in the model, particularly a gas with a higher density, the model can be made much smaller than the pressurized combustor (see Table 3). Care must be taken to select a safe modelling gas and one which yields a solid density for the model which is available. [Pg.59]

Glicksman and Farrell (1995) constructed a scale model of the Tidd 70 MWe pressurized fluidized bed combustor. The scale model was fluidized with air at atmospheric pressure and temperature. They used the simplified set of scaling relationships to construct a one-quarter length scale model of a section of the Tidd combustor shown in Fig. 34. Based on the results of Glicksman and McAndrews (1985), the bubble characteristics within a bank of horizontal tubes should be independent of wall effects at locations at least three to five bubble diameters away from the wall. Low density polyurethane beads were used to obtain a close fit with the solid-to-gas density ratio for the combustor as well as the particle sphericity and particle size distribution (Table 6). [Pg.77]

Differential pressure measurements were made between several vertical elevations within the bed. The probability density function of the cold model and combustor gave very close agreement (Fig. 35). The solid fraction profiles were obtained from the vertical pressure profile with a hydrostatic assumption. The cold model solid fraction profile showed very close agreement with data taken from pressure taps in two different locations within the combustor (Fig. 36). The solid fraction shows a... [Pg.77]

Ackeskog et al. (1993) made the first heat transfer measurements in a scale model of a pressurized bubbling bed combustor. These results shed light on the influence of particle size, density and pressure levels on the fundamental mechanism of heat transfer, e.g., the increased importance of the gas convective component with increased pressure. [Pg.87]

Anand, M. S., A. T. Hsu, and S. B. Pope (1997). Calculations of swirl combustors using joint velocity-scalar probability density function methods.. 47.4.4 Journal 35, 1143-1150. [Pg.406]

For a typical case, an axisymmetric jet with a mean velocity of 100 m/s flows through the cylindrical inlet of diameter D into a cylindrical combustion chamber of twice the diameter. An annular or central exit at the end of the combustion chamber is modeled to produce choked flow. Particles are injected from the inlet-combustor junction with a streamwise velocity of 50 m/s and zero radial velocity. If the number of particles is small (that is, for low-mass loadings), the effect of the particles on the flow can be neglected. Still the flow has an effect on the particles that depends on parameters such as the size and density of the particles. Such systems are called one-way coupled systems and are discussed next. [Pg.114]

Assume that to the left of the combustor outlet boundary, rr = 0, there exists a stationary solution of the Euler equations p = po, P = Po, u = uq, where po, po, and Mo are the constant pressure, density, and velocity. Flow velocity has a single nonzero component, mq, along the x axis. The flow is assumed subsonic, i.e., M = uq/cq < 1, where cq is the speed of sound. We consider the solution of the nonstationary Euler equations and linearize the problem in the vicinity of the stationary solution by assuming that... [Pg.189]

The Presumed Probability Density Function method is developed and implemented to study turbulent flame stabilization and combustion control in subsonic combustors with flame holders. The method considers turbulence-chemistry interaction, multiple thermo-chemical variables, variable pressure, near-wall effects, and provides the efficient research tool for studying flame stabilization and blow-off in practical ramjet burners. Nonreflecting multidimensional boundary conditions at open boundaries are derived, and implemented into the current research. The boundary conditions provide transparency to acoustic waves generated in bluff-body stabilized combustion zones, thus avoiding numerically induced oscillations and instabilities. It is shown that predicted flow patterns in a combustor are essentially affected by the boundary conditions. The derived nonreflecting boundary conditions provide the solutions corresponding to experimental findings. [Pg.205]

Figure 24.4 Measurements of gas temperature recorded at 3-kilohertz rate at x/d = 2 in the 5-kilowatt combustor (a) and the power spectral density (1-hertz resolution) of a 1-second history of the temperature measurements (6). Steady parameters = 0.75, fo = 100 Hz, Aair = 25 W, and 6 tuei = 200°... Figure 24.4 Measurements of gas temperature recorded at 3-kilohertz rate at x/d = 2 in the 5-kilowatt combustor (a) and the power spectral density (1-hertz resolution) of a 1-second history of the temperature measurements (6). Steady parameters </> = 0.75, fo = 100 Hz, Aair = 25 W, and 6 tuei = 200°...
COMBUSTOR INLET-AIR PRESSURE. Increased pressure accelerates smoke formation in both laboratory flames and combustors. Coke deposits are, in general, affected similarly. A leveling-off in deposit rate has been found once the pressure is increased to 2 to 3 atmospheres. This is attributed to increased rate of erosion with increased air density. Coke deposition would be expected to increase with pressure because smoke forms more readily at the higher pressures and because the evaporation of fuels is retarded. [Pg.269]

Example 5.4 Design a geometrically similar laboratory-scale cold model fluidized bed to simulate the hydrodynamics of a large-scale fluidized bed combustor. Also specify the operating conditions for the cold model. The combustor is a square cross section column with a width of 1.0 m and a height of 6 m. The fluidized bed combustor is operated at a temperature of 1,150 K, a superficial gas velocity of 1.01 m/s, and a bed height of 1.06 m. Particles with a density of2,630 kg/m3 and a diameter of677ptm are used for the combustor. The cold model is operated at a temperature of 300 K. Air is used for both the cold model and hot model fluidized beds. The physical properties of air are... [Pg.234]


See other pages where Density combustor is mentioned: [Pg.253]    [Pg.253]    [Pg.216]    [Pg.110]    [Pg.660]    [Pg.437]    [Pg.47]    [Pg.70]    [Pg.77]    [Pg.78]    [Pg.82]    [Pg.88]    [Pg.95]    [Pg.99]    [Pg.100]    [Pg.11]    [Pg.363]    [Pg.214]    [Pg.5]    [Pg.7]    [Pg.55]    [Pg.72]    [Pg.124]    [Pg.134]    [Pg.137]    [Pg.269]    [Pg.339]    [Pg.381]    [Pg.284]    [Pg.121]    [Pg.257]    [Pg.267]    [Pg.369]    [Pg.369]    [Pg.397]    [Pg.151]   
See also in sourсe #XX -- [ Pg.67 , Pg.68 ]




SEARCH



Combustor

Combustors

© 2024 chempedia.info