Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dense properties

Much of the early work using rare earths as monitors of Ca in cells was based on their close physical and chemical similarities and was aided by some useful REE characteristics. Examples of these are their paramagnetism, useful NMR spectra and the electron dense properties which make the REE visible under the electron microscope. [Pg.429]

Two generally accepted models for the vapor phase were discussed in Chapter 3 and one particular model for the liquid phase (UNIQUAC) was discussed in Chapter 4. Unfortunately, these, and all other presently available models, are only approximate when used to calculate equilibrium properties of dense fluid mixtures. Therefore, any such model must contain a number of adjustable parameters, which can only be obtained from experimental measurements. The predictions of the model may be sensitive to the values selected for model parameters, and the data available may contain significant measurement errors. Thus, it is of major importance that serious consideration be given to the proper treatment of experimental measurements for mixtures to obtain the most appropriate values for parameters in models such as UNIQUAC. [Pg.96]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

In general arenes resemble other hydrocarbons in their physical properties They are nonpolar insoluble in water and less dense than water In the absence of polar sub stituents mtermolecular forces are weak and limited to van der Waals attractions of the induced dipole/mduced dipole type... [Pg.438]

Properties of Dense Silicon Carbide. Properties of the SiC stmctural ceramics are shown in Table 1. These properties are for representative materials. Variations can exist within a given form depending on the manufacturer. Figure 2 shows the flexure strength of the SiC as a function of temperature. Sintered or sinter/HIP SiC is the preferred material for appHcations at temperatures over 1400°C and the Hquid-phase densified materials show best performance at low temperatures. The reaction-bonded form is utilized primarily for its ease of manufacture and not for superior mechanical properties. [Pg.319]

The physical properties of these fibers are compared with those of natural fibers and other synthetic fibers in Table 1. Additional property data may be found in compilations of the properties of natural and synthetic fibers (1). Apart from the polyolefins, acryhcs and nylon fibers are the lightest weight fibers on the market. Modacryhcs are considerably more dense than acryhcs, with a density about the same as wool and polyester. [Pg.274]

Modified ETEE is less dense, tougher, and stiffer and exhibits a higher tensile strength and creep resistance than PTEE, PEA, or EEP resins. It is ductile, and displays in various compositions the characteristic of a nonlinear stress—strain relationship. Typical physical properties of Tef2el products are shown in Table 1 (24,25). Properties such as elongation and flex life depend on crystallinity, which is affected by the rate of crysta11i2ation values depend on fabrication conditions and melt cooling rates. [Pg.366]

Trunsition-MetnlHydrides, Tiansition-metal hydiides, ie, inteistitial metal hydrides, have metalhc properties, conduct electricity, and ate less dense than the parent metal. Metal valence electrons are involved in both the hydrogen and metal bonds. Compositions can vary within limits and stoichiometry may not always be a simple numerical proportion. These hydrides are much harder and more brittie than the parent metal, and most have catalytic activity. [Pg.299]

The si2e of the vegetable tanning molecules and the coUoidal nature of the system result in the fixation in the hide of filling materials. The filling action is essentially an impregnation of the hide to form a dense firm leather. These properties are gready desired in sole and mechanical leathers. [Pg.86]

Nonporous Dense Membranes. Nonporous, dense membranes consist of a dense film through which permeants are transported by diffusion under the driving force of a pressure, concentration, or electrical potential gradient. The separation of various components of a solution is related directiy to their relative transport rate within the membrane, which is determined by their diffusivity and solubiUty ia the membrane material. An important property of nonporous, dense membranes is that even permeants of similar size may be separated when their concentration ia the membrane material (ie, their solubiUty) differs significantly. Most gas separation, pervaporation, and reverse osmosis membranes use dense membranes to perform the separation. However, these membranes usually have an asymmetric stmcture to improve the flux. [Pg.61]

Dense Symmetrical Membranes. These membranes are used on a large scale ia packagiag appHcations (see Eilms and sheeting Packaging materials). They are also used widely ia the laboratory to characterize membrane separation properties. However, it is difficult to make mechanically strong and defect-free symmetrical membranes thinner than 20 p.m, so the flux is low, and these membranes are rarely used in separation processes. Eor laboratory work, the membranes are prepared by solution casting or by melt pressing. [Pg.61]

Cellulose acetate Loeb-Sourirajan reverse osmosis membranes were introduced commercially in the 1960s. Since then, many other polymers have been made into asymmetric membranes in attempts to improve membrane properties. In the reverse osmosis area, these attempts have had limited success, the only significant example being Du Font s polyamide membrane. For gas separation and ultrafUtration, a number of membranes with useful properties have been made. However, the early work on asymmetric membranes has spawned numerous other techniques in which a microporous membrane is used as a support to carry another thin, dense separating layer. [Pg.68]

Mechanical Properties. The physical properties of a particular refractory product depend on its constituents and manner in which these were assembled. The physical properties may be varied to suit specific appHcations. For example, for thermal insulations highly porous products are employed, whereas dense products are used for slagging or abrasive conditions. [Pg.29]

Most commercially available RO membranes fall into one of two categories asymmetric membranes containing one polymer, or thin-fHm composite membranes consisting of two or more polymer layers. Asymmetric RO membranes have a thin ( 100 nm) permselective skin layer supported on a more porous sublayer of the same polymer. The dense skin layer determines the fluxes and selectivities of these membranes whereas the porous sublayer serves only as a mechanical support for the skin layer and has Httle effect on the membrane separation properties. Asymmetric membranes are most commonly formed by a phase inversion (polymer precipitation) process (16). In this process, a polymer solution is precipitated into a polymer-rich soHd phase that forms the membrane and a polymer-poor Hquid phase that forms the membrane pores or void spaces. [Pg.144]

In sohd—sohd separation, the soHds are separated iato fractions according to size, density, shape, or other particle property (see Size reduction). Sedimentation is also used for size separation, ie, classification of soHds (see Separation, size separation). One of the simplest ways to remove the coarse or dense soHds from a feed suspension is by sedimentation. Successive decantation ia a batch system produces closely controUed size fractions of the product. Generally, however, particle classification by sedimentation does not give sharp separation (see Size MEASUREMENT OF PARTICLES). [Pg.316]


See other pages where Dense properties is mentioned: [Pg.228]    [Pg.386]    [Pg.228]    [Pg.386]    [Pg.2]    [Pg.664]    [Pg.724]    [Pg.1264]    [Pg.2361]    [Pg.2762]    [Pg.442]    [Pg.317]    [Pg.322]    [Pg.525]    [Pg.526]    [Pg.526]    [Pg.267]    [Pg.276]    [Pg.281]    [Pg.283]    [Pg.282]    [Pg.400]    [Pg.328]    [Pg.150]    [Pg.248]    [Pg.176]    [Pg.376]    [Pg.61]    [Pg.66]    [Pg.188]    [Pg.407]    [Pg.97]    [Pg.3]    [Pg.8]    [Pg.281]    [Pg.154]    [Pg.527]    [Pg.30]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



© 2024 chempedia.info