Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclotron resonance analyzer

Ion cyclotron resonance analyzer. A device to determine the mass-to-charge ratio (m/z) of an ion in the presence of a magnetic field by measuring its cyclotron frequency. [Pg.429]

Mass spectrometer configuration. Multianalyzer instruments should be named for the analyzers in the sequence in which they are traversed by the ion beam, where B is a magnetic analyzer, E is an electrostatic analyzer, Q is a quadrupole analyzer, TOP is a time-of-flight analyzer, and ICR is an ion cyclotron resonance analyzer. For example BE mass spectrometer (reversed-geometry double-focusing instrument), BQ mass spectrometer (hybrid sector and quadrupole instrument), EBQ (double-focusing instrument followed by a quadrupole). [Pg.430]

Magnetic and electrostatic sectors, quadrupole, and time of flight analyzers belong to the first group, while ion trap, Orbitrap and Fourier transform ion cyclotron resonance analyzers separate ions in time. [Pg.54]

Analyzers The mass analyzer separates the ions according to their miz values. The most common analyzers are listed in Table 31-3. The most common analyzers for GC/MS are the quadrupole mass filter and the ion trap. High-resolution mass spectrometers use the double-focusing analyzer, the ion-cyclotron resonance analyzer, or the time-of-flight analyzer. [Pg.956]

Mclver R T 1970 A trapped ion analyzer cell for ion cyclotron resonance spectroscopy Rev. Sc/. Instrum. 41 555-8... [Pg.1360]

Commercial mass analyzers are based almost entirely on quadrupoles, magnetic sectors (with or without an added electric sector for high-resolution work), and time-of-flight (TOE) configurations or a combination of these. There are also ion traps and ion cyclotron resonance instruments. These are discussed as single use and combined (hybrid) use. [Pg.280]

An added consideration is that the TOF instruments are easily and quickly calibrated. As the mass range increases again (m/z 5,000-50,000), magnetic-sector instruments (with added electric sector) and ion cyclotron resonance instruments are very effective, but their prices tend to match the increases in resolving powers. At the top end of these ranges, masses of several million have been analyzed by using Fourier-transform ion cyclotron resonance (FTICR) instruments, but such measurements tend to be isolated rather than targets that can be achieved in everyday use. [Pg.281]

The most common modes of operation for ms/ms systems include daughter scan, parent ion scan, neutral loss scan, and selected reaction monitoring. The mode chosen depends on the information required. Stmctural identification is generally obtained using daughter or parent ion scan. The mass analyzers commonly used in tandem systems include quadmpole, magnetic-sector, electric-sector, time-of-flight, and ion cyclotron resonance. Some instmments add a third analyzer such as the triple quadmpole ms (27). [Pg.405]

Instruments are available that can perform MS/MS type experiments using a single analyzer. These instruments trap and manipulate ions in a trapping cell, which also serves as the mass analyzer. The ion trap and fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers are examples. [Pg.14]

Tandem mass spectrometry (MS/MS) is a method for obtaining sequence and structural information by measurement of the mass-to-charge ratios of ionized molecules before and after dissociation reactions within a mass spectrometer which consists essentially of two mass spectrometers in tandem. In the first step, precursor ions are selected for further fragmentation by energy impact and interaction with a collision gas. The generated product ions can be analyzed by a second scan step. MS/MS measurements of peptides can be performed using electrospray or matrix-assisted laser desorption/ionization in combination with triple quadruple, ion trap, quadrupole-TOF (time-of-flight), TOF-TOF or ion cyclotron resonance MS. Tandem... [Pg.1191]

To check the identity and purity of the products obtained in the above reactions it is not sufficient to analyze for the sulfur content since a mixture may incidentally have the same S content. Either X-ray diffraction on single crystals or Raman spectra of powder-like or crystalline samples will help to identify the anion(s) present in the product. However, the most convincing information comes from laser desorption Fourier transform ion cyclotron resonance (FTICR) mass spectra in the negative ion mode (LD mass spectra). It has been demonstrated that pure samples of K2S3 and K2S5 show peaks originating from S radical anions which are of the same size as the dianions in the particular sample no fragment ions of this type were observed [28]. [Pg.132]

Rapid scanning mass spectrometers providing unit resolution are routinely used as chroaatographic detectors. Ion separation is accomplished using either a magnetic sector, quadrupole filter or ion trap device. Ions can also be separated by time-of-flight or ion cyclotron resonance mass analyzers but these devices are not widely used with chromatograidiic inlets and will not be discussed here [20]. [Pg.991]

Different mass analysers can be combined with the electrospray ionization source to effect analysis. These include magnetic sector analysers, quadrupole filter (Q), quadrupole ion trap (QIT), time of flight (TOF), and more recently the Fourrier transform ion cyclotron resonance (FTICR) mass analysers. Tandem mass spectrometry can also be effected by combining one or more mass analysers in tandem, as in a triple quadrupole or a QTOF. The first analyzer is usually used as a mass filter to select parent ions that can be fragmented and analyzed by subsequent analysers. [Pg.237]

It should be pointed out that FAB, MALDI, and ESI can be used to provide ions for peptide mass maps or for microsequencing and that any kind of ion analyzer can support searches based only on molecular masses. Fragment or sequence ions are provided by instruments that can both select precursor ions and record their fragmentation. Such mass spectrometers include ion traps, Fourier transform ion cyclotron resonance, tandem quadrupole, tandem magnetic sector, several configurations of time-of-flight (TOF) analyzers, and hybrid systems such as quadrupole-TOF and ion trap-TOF analyzers. [Pg.262]

In analyses where molecular masses are being matched, more accurate mass measurements provide more reliable matches and identifications.26,65,66 In a reference laboratory the mass accuracy to several decimal points, provided by a Fourier transform ion cyclotron resonance mass analyzer, may be desirable. In field or portable systems there is usually a trade-off in mass accuracy for size and ruggedness. Reliable identifications can be made with moderate mass accuracy, even 1 Da, if a large enough suite of molecular ions is recorded and used to search the database. If both positive ion and negative ion spectra are... [Pg.262]

Various analyzers have been used to analyze phenolic compounds. The choice of the MS analyzer is influenced by the main objective of the study. The triple quadrupole (QqQ) has been used to quantify, applying multiple reaction monitoring experiments, whereas the ion trap has been used for both identification and structure elucidation of phenolic compounds. Moreover, time-of-flight (TOF) and Fourier-transform ion cyclotron resonance (FT-ICR) are mainly recommended for studies focused on obtaining accurate mass measurements with errors below 5 ppm and sub-ppm errors, respectively (Werner and others 2008). Nowadays, hybrid equipment also exists, including different ionization sources with different analyzers, for instance electrospray or atmospheric pressure chemical ionization with triple quadrupole and time-of-flight (Waridel and others 2001). [Pg.60]

Multiple mass analyzers exist that can perform tandem mass spectrometry. Some use a tandem-in-space configuration, such as the triple quadrupole mass analyzers illustrated (Fig.3.9). Others use a tandem-in-time configuration and include instruments such as ion-traps (ITMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS or FTMS). A triple quadrupole mass spectrometer can only perform the tandem process once for an isolated precursor ion (e.g., MS/MS), but trapping or tandem-in-time instruments can perform repetitive tandem mass spectrometry (MS ), thus adding n 1 degrees of structural characterization and elucidation. When an ion-trap is combined with HPLC and photodiode array detection, the net result is a profiling tool that is a powerful tool for both metabolite profiling and metabolite identification. [Pg.47]

Mass analyzers interrogate and resolve ions produced by an ion source based on their m/z ratios. Several types of mass analyzers are utilized for proteomic analysis including time-of-flight (TOF) quadrupoles, ion traps, and Fourier transform ion cyclotron resonance (FTICR). Mass analyzers may be assembled in hybrid configurations. MS instruments such as quadrupole TOF and quadra-pole ion trap-FTICR facilitate diversified applications and achieved great success. [Pg.381]

Ion detection is carried out using image current detection with subsequent Fourier transform of the time-domain signal in the same way as for the Fourier transform ion cyclotron resonance (FTICR) analyzer (see Section 2.2.6). Because frequency can be measured very precisely, high m/z separation can be attained. Here, the axial frequency is measured, since it is independent to the first order on energy and spatial spread of the ions. Since the orbitrap, contrary to the other mass analyzers described, is a recent invention, not many variations of the instrument exist. Apart from Thermo Fischer Scientific s commercial instrument, there is the earlier setup described in References 245 to 247. [Pg.57]

In the ion cyclotron resonance (ICR) analyzer, ions are trapped by a strong magnetic field. The magnetic field will cause the ions to move in a circular motion with a frequency that depends on their m/z.. Ions to be detected are excited to make them move closer to the detection plates. Then a small current will be induced in the plate each time an ion passes by. Since the ions with different m/z have different ICR frequencies, each generated current frequency will correspond to a certain m/z value. [Pg.58]

Principle. The principle of the ion cyclotron resonance was developed in the early 1930s by Lawrence and coworkers [252, 253]. The utilization of the ion cyclotron resonance (ICR) technique for mass spectrometry was introduced around 1950 by Sommer et al. [254, 255], and combination with the Fourier transform (FT) technique was developed by Comisarow and Marshall in 1974 [256], Coupling of external sources to an FTICR analyzer was first done in 1985 [257, 258],... [Pg.58]


See other pages where Cyclotron resonance analyzer is mentioned: [Pg.359]    [Pg.96]    [Pg.96]    [Pg.2198]    [Pg.79]    [Pg.1344]    [Pg.2906]    [Pg.79]    [Pg.81]    [Pg.359]    [Pg.96]    [Pg.96]    [Pg.2198]    [Pg.79]    [Pg.1344]    [Pg.2906]    [Pg.79]    [Pg.81]    [Pg.195]    [Pg.281]    [Pg.282]    [Pg.284]    [Pg.1029]    [Pg.58]    [Pg.60]    [Pg.190]    [Pg.59]    [Pg.38]    [Pg.38]   
See also in sourсe #XX -- [ Pg.439 ]




SEARCH



Cyclotron

Cyclotron resonance

© 2024 chempedia.info