Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloisomerization intramolecular

In addition to the reactions discussed above, there are still other alkyne reactions carried out in aqueous media. Examples include the Pseudomonas cepacia lipase-catalyzed hydrolysis of propargylic acetate in an acetone-water solvent system,137 the ruthenium-catalyzed cycloisomerization-oxidation of propargyl alcohols in DMF-water,138 an intramolecular allylindination of terminal alkyne in THF-water,139 and alkyne polymerization catalyzed by late-transition metals.140... [Pg.140]

Trost and others have extensively studied the ruthenium-catalyzed intermolecular Alder-ene reaction (see Section 10.12.3) however, conditions developed for the intermolecular coupling of alkenes and alkynes failed to lead to intramolecular cycloisomerization due the sensitivity of the [CpRu(cod)Cl] catalyst system to substitution patterns on the alkene.51 Trost and Toste instead found success using cationic [CpRu(MeCN)3]PF6 41. In contrast to the analogous palladium conditions, this catalyst gives exclusively 1,4-diene cycloisomerization products. The absence of 1,3-dienes supports the suggestion that the ruthenium-catalyzed cycloisomerization of enynes proceeds through a ruthenacycle intermediate (Scheme 11). [Pg.572]

Malacria and co-workers76 were the first to report the transition metal-catalyzed intramolecular cycloisomerization of allenynes in 1996. The cobalt-mediated process was presumed to proceed via a 7r-allyl intermediate (111, Scheme 22) following C-H activation. Alkyne insertion and reductive elimination give cross-conjugated triene 112 cobalt-catalyzed olefin isomerization of the Alder-ene product is presumed to be the mechanism by which 113 is formed. While exploring the cobalt(i)-catalyzed synthesis of steroidal skeletons, Malacria and co-workers77 observed the formation of Alder-ene product 115 from cis-114 (Equation (74)) in contrast, trans-114 underwent [2 + 2 + 2]-cyclization under identical conditions to form 116 (Equation (75)). [Pg.587]

An intramolecular palladium-catalyzed cycloisomerization of enyne 170 was used to access the antifungal agent, chokol C (Scheme 43).102 The choice of ligand and catalyst was essential to the efficiency of the Alder-ene reaction. Enone 171 was obtained as a single olefinic isomer resulting from migration of only Ha during the cycloisomerization reaction. [Pg.597]

This system was described in one report and has been synthesized by a copper-assisted cycloisomerization of alkynyl imines. The authors proposed the following mechanism at first, 372 could undergo a base-induced propargyl-allenyl isomerization to form 373 next, coordination of copper to the terminal double bond of the allene (intermediate 374) would make it subjected to intramolecular nucleophilic attack to produce a zwitterion 375. The latter would isomerize into the more stable zwitterionic intermediate 376, which would be transformed to the thiazole 377 (Scheme 55) <2001JA2074>. [Pg.94]

In 1979, Claesson et al. observed the formation of the dihydropyrrole 125 and the pyrrole 126 when trying to purify the amine 124 by GLC [85]. They suspected that an initial cycloisomerization first leads to 125 and a subsequent dehydrogenation then delivers 126. Guided by other intramolecular nucleophilic additions to alkynes that are catalyzed by AgBF4, they discovered that this catalyst efficiently allowed the transformation of 124 to 125 (Scheme 15.38). Reissig et al. found that with enantio-merically pure substrates of that kind a cyclization without racemization is possible with Ag(I) catalysts [86],... [Pg.897]

Wilkinson s catalyst also allows the intramolecular cycloisomerization of allenynes 243 to interesting cross-conjugated trienes 244 (Scheme 15.76) [146], Similar compounds are observed as side-products in Pauson-Khand reactions of allenynes [147]. [Pg.915]

The first example involving a rhodium catalyst in an ene reaction was reported by Schmitz in 1976. An intramolecular cyclization of a diene occurred to give a pyrrole when exposed to rhodium trichloride in isobutanol (Eq. 2) [15]. Subsequently to this work, Grigg utilized Wilkinson s catalyst to effect a similar cycloisomerization reaction (Eq. 3) [16]. Opplozer and Eurstner showed that a n -allyl-rhodium species could be formed from an allyl carbonate or acetate and intercepted intramolecularly by an alkene to afford 1,4-dienes (Eq. 4). Hydridotetrakis(triphenylphosphine)rhodium(l) proved to be the most efficient catalyst for this particular transformation. A direct comparison was made between this catalyst and palladium bis(dibenzylidene) acetone, in which it was determined that rhodium might offer an additional stereochemical perspective. In the latter case, this type of reaction is typically referred to as a metallo-ene reaction [17]. [Pg.152]

Brummond [28] was the first to illustrate that cross-conjugated trienes could be obtained via an allenic Alder-ene reaction catalyzed by [Rh(CO)2Cl]2 (Eq. 14). Selective formation of the cross-conjugated triene was enabled by a selective cycloisomerization reaction occurring with the distal double bond of the aUene. Typically directing groups on the allene, differential substitution of the aUene termini, or intramolecularization are required for constitutional group selectivity. However, rhodium(f), unlike other transition metals examined, facihtated selective cyclization with the distal double bond of the allene in nearly aU the cases examined. [Pg.160]

The Lee group originated rhodium alkenylidene-mediated catalysis by combining acetylide/alkenylidene interconversion with known metal vinylidene functionalization reactions [31], Thus, the first all-intramolecular three-component coupling between alkyl iodides, alkynes, and olefins was realized (Scheme 9.17). Prior to their work, such tandem reaction sequences required several distinct chemical operations. The optimized reaction conditions are identical to those of their original two-component cycloisomerization of enynes (see Section 9.2.2, Equation 9.1) except for the addition of an external base (Et3N). Various substituted [4.3.0]-bicyclononene derivatives were synthesized under mild conditions. Oxacycles and azacycles were also formed. The use of DMF as a solvent proved essential reactions in THF afforded only enyne cycloisomerization products, leaving the alkyl iodide moiety intact. [Pg.300]

Based on the formal analogy between the intermolecular hydrovinylation and the intramolecular cycloisomerization process, we have chosen catalysts with proven potential for the first reaction type [48, 51] as the starting point of our study. The results are summarized in Table 2.1.5.7 [64]. Despite its excellent performance in the hydrovinylation of styrene [51], the [ Ni(allyl) Br 2]/(Ra, Sc, Sc)-26/NaBARF system led to disappointingly low conversions and selectivities in the cycloisomerization of 27a (entry 1). Similarly, the [ Ni(allyl)Cl 2]/(Ra,Rc)-4cel/Na-BARF system is not effective for the cycloisomerization of 27a (entry 2) even though it is able to promote the hydrovinylation. The other diastereomer, (R ,Sc)-4cel, however, which forms an active nickel catalyst for styrene oligomerization... [Pg.271]

In a recent report, Toste and Shen developed a gold(I)-catalyzed cyclization of alkynes using silyl ketene amides that, by means of prior hydrolysis, provided 1,6-enyne (285) or 1,5-enyne systems (287) activated for the intramolecular cycloisomerization [160]. [Pg.469]

Intramolecular examples of iron-catalyzed formal Alder-ene reactions, which are also denoted cycloisomerization reactions, were described in the late 1980s by the groups of Tietze and Takacs in reactions directed towards cyclopentane [6, 7], cyclohexane [8], piperidine [9] and tetrahydropyran derivatives [10]. [Pg.245]

Gold(I)-catalysed cycloisomerizations of enynes (38) afford gold-carbene complexes (39) that have been trapped in an intramolecular fashion yielding highly strained tetracycles (40).38... [Pg.159]

Intramolecular 2 + 2 + 2-cycloisomerizations of cyclic triynes and enediynes have been reported with RhCl(CO)(PPh3)2.126 The transition metal-catalysed rearrangement of alk-5-ynals to /-alkynyl ketones and cyclopent-l-enyl ketones was developed using [Rh(P(OPh)3)2]BF4 or Cu(OTf)2 as a catalyst and the effect of substituents on the partition to products was elaborated (Scheme 84).127... [Pg.472]

Intramolecular addition of a hydroxy group to the terminal sp-carbon of pent-4-yn-l-ols, leading to the corresponding cycloisomerization dihydropyrans, has been successfully achieved with a similar ruthenium catalyst precursor containing the electron-deficient tris(p-fluorophenyl)phosphine ligand, excess phosphine, and sodium N-hydroxysuccinimide as additives (Scheme 9) [20]. [Pg.78]

It must be pointed out that tungsten [22-26] and molybdenum [26-29] carbonyl precursors also have remarkable catalytic activity in the cycloisomerization of alky-nols to produce dihydropyrans and dihydrofurans via intramolecular nucleophilic addition of the hydroxy group to the terminal carbon of the triple bond, activated... [Pg.79]

The intramolecular Alder-ene reaction (enyne cydoisomerization reaction) with alkynes as the enophiles has found wide application compared with diene systems. The reason may be the ready chemo-differentiation between alkene and alkyne functionality and the more reactive alkyne moiety. Furthermore, the diene nature of the products will promote further applications such as Diels-Alder reactions in organic synthesis. Over the past two decades the transition metal-catalyzed Alder-ene cycloisomerization of l,n-enynes (typically n= 6, 7) has emerged as a very powerful method for constructing complicated carbo- or heterocydic frameworks. The transition metals for this transformation indude Pd, Pt, Co, Ru, Ni-Cr, and Rh. Lewis acid-promoted cydoisomerization of activated enynes has also been reported [11],... [Pg.455]

A ruthenium based catalytic system was developed by Trost and coworkers and used for the intermolecular Alder-ene reaction of unactivated alkynes and alkenes [30]. In initial attempts to develop an intramolecular version it was found that CpRu(COD)Cl catalyzed 1,6-enyne cycloisomerizations only if the olefins were monosubstituted. They recently discovered that if the cationic ruthenium catalyst CpRu(CH3CN)3+PF6 is used the reaction can tolerate 1,2-di- or tri-substituted alkenes and enables the cycloisomerization of 1,6- and 1,7-enynes [31]. The formation of metallacyclopentene and a /3-hydride elimination mechanism was proposed and the cycloisomerization product was formed in favor of the 1,4-diene. A... [Pg.457]

Jt-allyl complex can be generated after cyclization, as suggested by Takacs in a Fe(0)-catalyzed cyclization of polyenes. It also can be preformed if an active functional group is present in the allylic position. The palladium-catalyzed intramolecular cycloisomerization reaction of allylic acetates is an efficient method for constructing five- or six-membered rings [56, 57]. An asymmetric approach to this transformation has been studied and so far only poor enantioselectivity has been achieved (0-20% ee) [58]. Very recently, Zhang et al. also reported a Rh-catalyzed cycloisomerization involving a Jt-allylrhodium intermediate formed from an allylic halide [59]. [Pg.462]

The ether-tethered allenyne 248 undergoes a rhodium(l)-catalyzed intramolecular allenic Alder ene reaction to afford the ( )-3,6-dihydropyran 249 as the major product (Equation 111) <2002JA15186>. Likewise, ether tethered enynes can undergo rhodium(i)-catalyzed cycloisomerizations to afford 3,6-dihydropyrans <2005JA10180>. [Pg.482]

Scheme 5.14 The aldol cycloisomerization by pipecolinic acid and NMI-catalyzed asymmetric intramolecular MBH reaction followed by a kinetic resolution quench . Scheme 5.14 The aldol cycloisomerization by pipecolinic acid and NMI-catalyzed asymmetric intramolecular MBH reaction followed by a kinetic resolution quench .
A modification of this system was also used in intramolecular MBH reactions (also called as aldol cycloisomerization) [71, 74]. In this reaction, optically active pipecolinic acid 61 was found to be a better co-catalyst than proline, and allowed ee-values of up to 80% to be obtained, without a peptide catalyst. The inter-molecular aldol dimerization, which is an important competing side-reaction of the basic amine-mediated intramolecular MBH reaction, was efficiently suppressed in a THF H20 (3 1) mixture at room temperature, allowing the formation of six-membered carbocycles (Scheme 5.14). The enantioselectivity of the reaction could be improved via a kinetic resolution quench by adding acetic anhydride as an acylating agent to the reaction mixture and a peptide-based asymmetric catalyst such as 64 that mediates a subsequent asymmetric acylation reaction. The non-acylated product 65 was recovered in 50% isolated yield with ee >98%. [Pg.166]

Copper(I) catalysis is very well established to promote intramolecular [2+2] photocycloaddition reactions of l,n-dienes (review [351]). The methodology recently enjoyed a number of applications [352-354], It is assumed that CuOTf, which is commonly applied as the catalyst, coordinates the diene and in this way mediates a preorganization. The Ghosh group recently reported a number of CuOTf-catalyzed photochemical [2+2] cycloaddition reactions, in which an organocopper radical complex was proposed as a cyclization intermediate (which should, however, have a formal Cu(II) oxidation state) (selected references [355-357]). A radical complex must, however, not be invoked, since the process may either proceed by a [2+2] photocycloaddition in the coordination sphere of copper without changing the oxidation state or according to a cycloisomerization/reductive elimination process. [Pg.399]

The first such reaction published in 1908 by Ciamician and Silber was the light induced carvone —> carvonecamphor isomerization, corresponding to type b [1]. Between 1930 and 1960 some examples of photodimerizations (type c) of steroidal cyclohexenones and 3-alkylcyclohexenones were reported [2-5]. In 1964, Eaton and Cole accomplished the synthesis of cubane, wherein the key step is again a type b) photocycloisomerization [6]. The first examples of type a) reactions were the cyclopent-2-enone + cyclopentene photocycloaddition (Eaton, 1962) and then the photoaddition of cyclohex-2-enone to a variety of alkenes (Corey, 1964) [7,8]. Very soon thereafter the first reviews on photocycloaddition of a,(3-unsaturated ketones to alkenes appeared [9,10]. Finally, one early example of a type d) isomerization was communicated in 1981 [11]. This chapter will focus mainly on intermolecular enone + alkene cycloadditions, i.e., type a), reactions and also comprise some recent developments in the intramolecular, i.e., type b) cycloisomerizations. [Pg.211]

In contrast to these intermolecular enone + alkene photocycloadditions, the regioselectivity in the corresponding intramolecular cycloisomerizations of alkenylcycloalkenones is controlled primarily by... [Pg.214]

The ruthenium-catalyzed cycloisomerization of a variety of <5-enallenes was also achieved, forming cyclic 1,3-dienes or 1,4-dienes depending on the substrates and reaction conditions [32] (Eq. 22). This intramolecular coupling of the C=C bond and allenes can be envisioned by the initial hydrometallation of the allene moiety followed by intramolecular olefin insertion and isomerization. [Pg.11]

The catalyst [RuC12(CO)3]2 also promotes the electrophilic activation of the C=CH bond of co-arylalk-l-ynes. The intramolecular cycloisomerization takes place with nucleophilic addition of the aryl group to the activated /1-carbon of the alkyne bond, thus eliminating a vinylidene intermediate [68]. [Pg.22]

Besides enyne metathesis [66] (see also the chapter Recent Advances in Alkenes Metathesis in this volume), which generally produces 1-vinylcyclo-alkenes, ruthenium-catalyzed enyne cycloisomerization can proceed by two major pathways via hydrometallation or a ruthenacycle intermediate. The RuClH(CO)(PPh3)3 complex catalyzed the cyclization of 1,5- and 1,6-enynes with an electron-withdrawing group on the alkene to give cyclized 1,3-dienes, dialkylidenecyclopentanes (for n=2), or alkylidenecyclopentenes (for n= 1) [69,70] (Eq. 51). Hydroruthenation of the alkyne can give two vinylruthenium complexes which can undergo intramolecular alkene insertion into the Ru-C bond. [Pg.22]


See other pages where Cycloisomerization intramolecular is mentioned: [Pg.610]    [Pg.163]    [Pg.303]    [Pg.610]    [Pg.163]    [Pg.303]    [Pg.141]    [Pg.494]    [Pg.677]    [Pg.720]    [Pg.57]    [Pg.889]    [Pg.200]    [Pg.130]    [Pg.252]    [Pg.252]    [Pg.482]    [Pg.485]    [Pg.454]    [Pg.464]    [Pg.446]    [Pg.305]    [Pg.21]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Cycloisomerism

Cycloisomerization

Cycloisomerizations

© 2024 chempedia.info