Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyanohydrination

U8 C, (-l-)-or (-)- m.p. 133X. Occurs combined in the glucoside amygdalin. Prepared by hydrolysis of mandelonitrile (ben-zaldehyde cyanohydrin). It is administered in large doses in the treatment of urinary infections. [Pg.248]

CHi=CMeCOOH. Colourless prisms m.p. 15-16 C, b.p. 160-5 C. Manufactured by treating propanone cyanohydrin with dilute sulphuric acid. Polymerizes when distilled or when heated with hydrochloric acid under pressure, see acrylic acid polymers. Used in the preparation of synthetic acrylate resins the methyl and ethyl esters form important glass-like polymers. [Pg.258]

CH =C(CH3)C02Me. Colourless liquid b.p. lOO C. Manufactured by healing acetone cyanohydrin with methanol and sulphuric acid. It is usually supplied containing dissolved polymerization inhibitor, on removal of which it is readily polymerized to a glass-like polymer. See acrylate resins. [Pg.261]

In the mid 1970s, Ugi and co-workers developed a scheme based on treating reactions by means of matrices - reaction (R-) matrices [16, 17]. The representation of chemical structures by bond and electron (BE-) matrices was presented in Section 2.4. BE-matrices can be constructed not only for single molecules but also for ensembles of them, such as the starting materials of a reaction, e.g., formaldehyde (methanal) and hydrocyanic add as shown with the B E-matrix, B, in Figure 3-12. Figure 3-12 also shows the BE-matrix, E, of the reaction product, the cyanohydrin of formaldehyde. [Pg.185]

Equip a 1-litre three-necked flask with a mechanical stirrer, a separatory funnel and a thermometer. Place a solution of 47 g. of sodium cyanide (or 62 g. of potassium cyanide) in 200 ml. of water in the flask, and introduce 58 g. (73-5 ml.) of pure acetone. Add slowly from the separatory fumiel, with constant stirring, 334 g. (275 ml.) of 30 per cent, sulphuric acid by weight. Do not allow the temperature to rise above 15-20° add crushed ice, if necessary, to the mixture by momentarily removing the thermometer. After all the acid has been added continue the stirring for 15 minutes. Extract the reaction mixture with three 50 ml. portions of ether, dry the ethereal extracts with anhydrous sodium or magnesium sulphate, remove most of the ether on a water bath and distil the residue rapidly under diminished pressure. The acetone cyanohydrin passes over at 80-82°/15 mm. The yield is 62 g. [Pg.348]

Mandelic acid. This preparation is an example of the synthesis of an a-hydroxy acid by the cyanohydrin method. To avoid the use of the very volatile and extremely poisonous hquid hydrogen cyanide, the cyanohydrin (mandelonitrile) is prepared by treatment of the so um bisulphite addition compound of benzaldehj de (not isolated) with sodium cyanide ... [Pg.754]

Hydantoins with one or two substituents in the 5-position may be obtained by heating cyanohydrins with ammonium carbonate or with urea. Thus ... [Pg.843]

Mix 42 5 g. of acetone cyanohydrin (Section 111,75) and 75 g. of freshly powdered ammonium carbonate in a small beaker, warm the mixture on a water bath FUME CUPBOARD) and stir with a thermometer. Gentle action commences at 50° and continues during about 3 hours at 70-80°. To complete the reaction, raise the temperature to 90° and maintain it at this point until the mixture is quiescent (ca. 30 minutes). The colourless (or pale yellow) residue solidifies on coohng. Dissolve it in 60 ml. of hot water, digest with a little decolourising carbon, and filter rapidly through a pre-heated Buchner funnel. Evaporate the filtrate on a hot plate until crystals appear on the surface of the liquid, and then cool in ice. Filter off the white crystals with suction, drain well, and then wash twice with 4 ml. portions of ether this crop of crystals of dimethylhydantoin is almost pure and melts at 176°. Concentrate the mother liquor to the crj staUisation point, cool in ice, and collect the... [Pg.843]

Methyl methacrylate is obtained commercially from acetone cyanohydrin HCN CH.OH,... [Pg.1016]

The action of sulphuric acid alone upon acetone cyanohydrin affords a-methylacrylic acid. The methyl methacrylate polymers are the nearest approach to an organic glass so far developed, and are marketed as Perspex (sheet or rod) or Dialcon (powder) in Great Britain and as Plexiglass and Luciie in the U.S.A. They are readily depolymerised to the monomers upon distillation. The constitution of methyl methacrylate polymer has been given as ... [Pg.1016]

The most general methods for the syntheses of 1,2-difunctional molecules are based on the oxidation of carbon-carbon multiple bonds (p. 117) and the opening of oxiranes by hetero atoms (p. 123fl.). There exist, however, also a few useful reactions in which an a - and a d -synthon or two r -synthons are combined. The classical polar reaction is the addition of cyanide anion to carbonyl groups, which leads to a-hydroxynitriles (cyanohydrins). It is used, for example, in Strecker s synthesis of amino acids and in the homologization of monosaccharides. The ff-hydroxy group of a nitrile can be easily substituted by various nucleophiles, the nitrile can be solvolyzed or reduced. Therefore a large variety of terminal difunctional molecules with one additional carbon atom can be made. Equally versatile are a-methylsulfinyl ketones (H.G. Hauthal, 1971 T. Durst, 1979 O. DeLucchi, 1991), which are available from acid chlorides or esters and the dimsyl anion. Carbanions of these compounds can also be used for the synthesis of 1,4-dicarbonyl compounds (p. 65f.). [Pg.50]

Out first example is 2-hydroxy-2-methyl-3-octanone. 3-Octanone can be purchased, but it would be difficult to differentiate the two activated methylene groups in alkylation and oxidation reactions. Usual syntheses of acyloins are based upon addition of terminal alkynes to ketones (disconnection 1 see p. 52). For syntheses of unsymmetrical 1,2-difunctional compounds it is often advisable to look also for reactive starting materials, which do already contain the right substitution pattern. In the present case it turns out that 3-hydroxy-3-methyl-2-butanone is an inexpensive commercial product. This molecule dictates disconnection 3. Another practical synthesis starts with acetone cyanohydrin and pentylmagnesium bromide (disconnection 2). Many 1,2-difunctional compounds are accessible via oxidation of C—C multiple bonds. In this case the target molecule may be obtained by simple permanganate oxidation of 2-methyl-2-octene, which may be synthesized by Wittig reaction (disconnection 1). [Pg.201]

The allylic geminal diacetate 141 undergoes the monoallylation of malonates to give 142 and the two regioisomers 143 and 144[93,94]. The dimethylacetal 145 or ortho esters of aromatic and a,/3-unsaturated carbonyl compounds react with trimethylsilyl cyanide to give the methyl ether of cyanohydrin[95]. [Pg.310]

When allylic compounds are treated with Pd(0) catalyst in the absence of any nucleophile, 1,4-elimination is a sole reaction path, as shown by 492, and conjugated dienes are formed as a mixture of E and Z isomers[329]. From terminal allylic compounds, terminal conjugated dienes are formed. The reaction has been applied to the syntheses of a pheromone, 12-acetoxy-1,3-dode-cadiene (493)[330], ambergris fragrance[331], and aklavinone[332]. Selective elimination of the acetate of the cyanohydrin 494 derived from 2-nonenal is a key reaction for the formation of the 1,3-diene unit in pellitorine (495)[333], Facile aromatization occurs by bis-elimination of the l,4-diacetoxy-2-cyclohex-ene 496[334],... [Pg.356]

DiaminO 4,4-dimethyl-l,3,5-thiadiazine hydrobromide was isolated as by-product (418). Benzene sulfonates of cyanohydrin prepared from sodium cyanide and an halobenzoaldehyde, when treated with thiourea or its derivatives, afford 2,4-diamino-5-(p-halogenophenyl)-thiazole benzene sulfonates (447). Similarly, cyanoamido thiocarbamates obtained from cyanamide and isothiocyanates yield substituted 2,4-diaminothiazoles (598). [Pg.297]

The product of addition of hydrogen cyanide to an aldehyde or a ketone contains both a hydroxyl group and a cyano group bonded to the same carbon Compounds of this type are called cyanohydrins... [Pg.717]

The addition of hydrogen cyanide is catalyzed by cyanide ion but HCN is too weak an acid to provide enough C=N for the reaction to proceed at a reasonable rate Cyanohydrins are therefore normally prepared by adding an acid to a solution containing the carbonyl compound and sodium or potassium cyanide This procedure ensures that free cyanide ion is always present m amounts sufficient to increase the rate of the reaction... [Pg.718]

Cyanohydrin formation is reversible and the position of equilibrium depends on the steric and electronic factors governing nucleophilic addition to carbonyl groups described m the preceding section Aldehydes and unhindered ketones give good yields of cyanohydrins... [Pg.719]

In substitutive lUPAC nomen clature cyanohydrins are named as hydroxy deriva tives of nitriles Because ni trile nomenclature will not be discussed until Section 20 1 we will refer to cyanohydrins as derivatives of the parent aldehyde or ketone as shown in the ex amples This conforms to the practice of most chemists... [Pg.719]

Converting aldehydes and ketones to cyanohydrins is of synthetic value for two reasons (1) a new carbon-carbon bond is formed and (2) the cyano group in the prod uct can be converted to a carboxylic acid function (CO2H) by hydrolysis (to be discussed in Section 19 12) or to an amine of the type CH2NH2 by reduction (to be discussed m Section 22 9)... [Pg.720]

The hydroxyl group of a cyanohydrin is also a potentially reac... [Pg.720]


See other pages where Cyanohydrination is mentioned: [Pg.121]    [Pg.207]    [Pg.186]    [Pg.341]    [Pg.341]    [Pg.348]    [Pg.412]    [Pg.843]    [Pg.92]    [Pg.402]    [Pg.717]    [Pg.717]    [Pg.717]    [Pg.719]    [Pg.719]    [Pg.719]    [Pg.719]    [Pg.719]    [Pg.719]    [Pg.719]    [Pg.719]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Cyanohydrine

Cyanohydrins

© 2024 chempedia.info