Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross Heck reaction

Heck reaction, palladium-catalyzed cross-coupling reactions between organohalides or triflates with olefins (72JOC2320), can take place inter- or intra-molecularly. It is a powerful carbon-carbon bond forming reaction for the preparation of alkenyl- and aryl-substituted alkenes in which only a catalytic amount of a palladium(O) complex is required. [Pg.22]

Closely related to the Heck reaction is the Sonogashira reaction i.e. the palladium-catalyzed cross-coupling of a vinyl or aryl halide 20 and a terminal alkyne 21 ... [Pg.158]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

For reviews of the Heck reaction, see (a) Brase, S. de Meijere, A. In Metal-Catalyzed Cross-... [Pg.36]

For overviews of applications of the Heck reaction in natural products synthesis, see (a) Link, J. T. Overman, L. E. In Metal-Catalyzed Cross-Coupling Reactions, Diederich, F., Stang, P. J., Eds. Wiley-VCH New York, 1998 Chapter 6. (b) Brase, S. de Meijere, A. In Metal-Catalyzed Cross-Coupling Reactions Diederich, F., Stang, P. J., Eds. Wiley New York, 1998 Chapter 3.6. (c) Nicolaou, K. C. Sorensen, E. J. Classics in Total Synthesis VCH New York, 1996 Chapter 31. These authors refer to the Heck reaction as "one of the true "power tools" of contemporary organic synthesis" (p. 566). [Pg.37]

In a very recent work, the Pd-catalysed cross-coupling reactions with arenediazonium salts under aerobic conditions in the presence of a chiral monothiourea ligand were reported (Scheme 25) [106]. Even if this Hgand bears four chiral centres, no test in asymmetric Heck-type reaction has been described so far. [Pg.248]

Erase S, de Meijere A(2004) Cross-coupling of organic halides withalkenes The Heck reaction. In de Meijere A, Diederich F (eds) Metal-catalyzed cross-coupling reactions, 2nd edn. Wiley-VCH, Weinheim... [Pg.186]

Abstract This chapter highlights the use of iV-heterocyclic carbenes as supporting ligands in arylation reactions different than the more common cross-coupling reactions, including C-F bond activation, catalytic arylation, homocoupling, direct arylation and oxidative Heck reactions. [Pg.191]

Transition metal-catalysed reactions have emerged as powerful tools for carbon-carbon (C-C) bond formation [1], Cross-coupling reactions (Suzuki-Miyaura, Mizoroki-Heck, Stille, etc.) are recognised to be extremely reliable, robust and versatile. However, some other catalysed arylation reactions have been studied and have been reported to be very efficient [2]. In recent years, A -heterocyclic carbenes (NHC) have been extensively studied and their use as ligands for transition-metal catalysis has allowed for the significant improvement of many reactions [3]. This chapter highlights the use of NHC-bearing complexes in those arylation reactions. [Pg.191]

Phosphine ligands based on the ferrocene backbone are very efficient in many palladium-catalyzed reactions, e.g., cross-coupling reactions,248 Heck reaction,249 amination reaction,250 and enantioselective synthesis.251 A particularly interesting example of an unusual coordination mode of the l,l -bis(diphenylphosphino)ferrocene (dppf) ligand has been reported. Dicationic palladium(II) complexes, such as [(dppf)Pd(PPh3)]2+[BF4 ]2, were shown to contain a palladium-iron bond.252,253 Palladium-iron bonds occur also in monocationic methyl and acylpalladium(II) complexes.254 A palladium-iron interaction is favored by bulky alkyl substituents on phosphorus and a lower electron density at palladium. [Pg.575]

Substrate reactivity was as expected (Arl > ArBr ArCl). In contrast to the Suzuki cross-coupling, however, Cu and Ru clusters were not active in the Heck reactions, and the activity of Cu/Pd clusters was lower than that of pure Pd clusters. Note the higher activity of Pd clusters prepared in situ (row F) compared to pre-prepared clusters (rows B and G). This increased activity tallies with our findings for Suzuki cross-coupling (7). After reaction, palladium black was observed in all the vials in rows B and G, but not in row F. [Pg.212]

Palladium-catalyzed carbon-carbon cross-coupling reactions are among the best studied reactions in recent decades since their discovery [102, 127-130], These processes involve molecular Pd complexes, and also palladium salts and ligand-free approaches, where palladium(O) species act as catalytically active species [131-135]. For example, the Heck reaction with aryl iodides or bromides is promoted by a plethora of Pd(II) and Pd(0) sources [128, 130], At least in the case of ligand-free palladium sources, the involvement of soluble Pd NPs as a reservoir for catalytically active species seems very plausible [136-138], Noteworthy, it is generally accepted that the true catalyst in the reactions catalyzed by Pd(0) NPs is probably molecular zerovalent species detached from the NP surface that enter the main catalytic cycle and subsequently agglomerate as N Ps or even as bulk metal. [Pg.17]

Stevens, P.D., Li, G.F., Fan, J.D., Yen, M. and Gao, Y. (2005) Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chemical Communications (35), 4435-4437. [Pg.86]

Supported ultra small palladium on magnetic nanopartides used as catalysts for Suzuki cross-coupling and Heck reactions. Advanced Synthesis and Catalysis, 349, 1917-1922. [Pg.87]

Transition metal-catalyzed transformations are of major importance in synthetic organic chemistry [1], This reflects also the increasing number of domino processes starting with such a reaction. In particular, Pd-catalyzed domino transformations have seen an astounding development over the past years with the Heck reaction [2] - the Pd-catalyzed transformation of aryl halides or triflates as well as of alkenyl halides or triflates with alkenes or alkynes - being used most often. This has been combined with another Heck reaction or a cross-coupling reaction [3] such as Suzuki, Stille, and Sonogashira reactions. Moreover, several examples have been published with a Tsuji-Trost reaction [lb, 4], a carbonylation, a pericyclic or an aldol reaction as the second step. [Pg.359]

The combination of a Heck and a cross-coupling reaction has not been widely exploited. However, there are some reactions where, following oxidative addition, a... [Pg.370]

Using Pd-mediated cross-coupling reactions, such as Suzuki, Heck, and Sonoga-shira- Hagihara reaction, researchers efficiently constructed a library of 151 coumarin derivatives from eight 3-bromocoumarins cross-coupled with ten aryl/heteroaryl boronic acids, ten alkenes, and ten alkynes (Fig. 4). [Pg.154]

C—C Bond Formation by Cross Coupling 9.9.3.3.1 Heck reaction... [Pg.463]

Scheme 12. Pd(0)-catalyzed Sonogashira and Heck cross-coupling reactions leading to glycoclusters.100... Scheme 12. Pd(0)-catalyzed Sonogashira and Heck cross-coupling reactions leading to glycoclusters.100...
There are many other examples in the literature where sealed-vessel microwave conditions have been employed to heat water as a reaction solvent well above its boiling point. Examples include transition metal catalyzed transformations such as Suzuki [43], Heck [44], Sonogashira [45], and Stille [46] cross-coupling reactions, in addition to cyanation reactions [47], phenylations [48], heterocycle formation [49], and even solid-phase organic syntheses [50] (see Chapters 6 and 7 for details). In many of these studies, reaction temperatures lower than those normally considered near-critical (Table 4.2) have been employed (100-150 °C). This is due in part to the fact that with single-mode microwave reactors (see Section 3.5) 200-220 °C is the current limit to which water can be safely heated under pressure since these instruments generally have a 20 bar pressure limit. For generating truly near-critical conditions around 280 °C, special microwave reactors able to withstand pressures of up to 80 bar have to be utilized (see Section 3.4.4). [Pg.69]

Palladium(0)-catalyzed coupling reactions - i. e. the Heck and Sonogashira reactions, the carbonylative coupling reactions, the Suzuki and Stille cross-coupling reactions, and allylic substitutions (Fig. 11.1) - have enabled the formation of many kinds of carbon-carbon attachments that were previously very difficult to make. These reactions are usually robust and occur in the presence of a wide variety of functional groups. The reactions are, furthermore, autocatalytic (i.e. the substrate regenerates the required oxidation state of the palladium) and a vast number of different ligands can be used to fine-tune the reactivity and selectivity of the reactions. [Pg.380]


See other pages where Cross Heck reaction is mentioned: [Pg.23]    [Pg.276]    [Pg.338]    [Pg.82]    [Pg.102]    [Pg.127]    [Pg.202]    [Pg.335]    [Pg.228]    [Pg.195]    [Pg.1329]    [Pg.1336]    [Pg.19]    [Pg.74]    [Pg.370]    [Pg.387]    [Pg.165]    [Pg.333]    [Pg.106]    [Pg.212]    [Pg.318]    [Pg.372]    [Pg.167]    [Pg.195]    [Pg.176]    [Pg.231]    [Pg.170]   
See also in sourсe #XX -- [ Pg.92 , Pg.93 ]




SEARCH



Domino reactions cross-coupling/ Mizoroki-Heck

Heck Reactions Combined with Other Cross-Coupling Processes

Heck cross-coupling reaction

Heck reaction cleavage/cross-coupling reactions

Heck reaction cross-coupling processes

Mizoroki-Heck cross-coupling reaction

© 2024 chempedia.info