Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical micelle formation

The physicochemical data underline the striking influence of the dicyclopentadienyl unit on the properties of these silicone surfactants. In comparison to conventional products [7], the critical micelle formation concentration was lowered for up to two orders of magnitude whereas the minimum surface tension reached rose only slightly. The data collected indicate that the type of surfactant has been changed from the initial "effective" to a more "efficient" one. [Pg.267]

Lien EJ, Perrin JH. Effect of chain length on critical micelle formation and protein binding of quaternary ammonium compounds. J Med Chem 1976 19 849-850. [Pg.63]

It has been shown [21] that, at low concentrations (below the critical micelle formation concentration), asphaltenes in solution are in a molecular state. Above the critical micelle concentration, however, asphaltene micelle formation occurs in a manner similar to that in surfactant systems where surfactant monomers are more uniform in their structure and less polydisperse. Now, it is obvious that coke for-... [Pg.341]

Nitsch, W. and Weber, G., Overcoming adsorptive inhibition of mass transfer in the range of critical micelle formation concentration, Chem. Eng. Techn., 48, 715, 1976. [Pg.490]

In Figure 2 the sodium-ion, dodecyl sulfate ion activities and the mean activity of the NaDS solution are plotted against the total surfactant concentration at a constant (0.224%) PVA concentration. The activity coefficients are relative to that of a 5.0xl0"3 moLkg" NaDS solution (a ). The shape of the experimental activity curves is similar to that obtained by the model calculations. At about 6 mmoLkg l concentration, which is still less than the critical micelle formation concentration (cjy = 8.1 mmol.kg ), complex formation occurs between PVA and NaDS, and above this point the mean activity increases only slightly. [Pg.391]

Table 1 The critical micelle formation concentration (cmc) values of the alkali decyl sulfates... Table 1 The critical micelle formation concentration (cmc) values of the alkali decyl sulfates...
The concentration of the surfactant in micellar and in complex form (in monomer units) is plotted against the equilibrium surfactant concentration in Fig. 3. The critical micelle formation concentration is around 0.42 mM. When the total surfactant concentration reaches this value the excess surfactants form micelles at almost constant equilibrium monomer concentration. Cp cannot increase to 0.47-0.48 mM where... [Pg.181]

Critical Micelle Concentration. The rate at which the properties of surfactant solutions vary with concentration changes at the concentration where micelle formation starts. Surface and interfacial tension, equivalent conductance (50), dye solubilization (51), iodine solubilization (52), and refractive index (53) are properties commonly used as the basis for methods of CMC determination. [Pg.238]

Anionic Surfactants. PVP also interacts with anionic detergents, another class of large anions (108). This interaction has generated considerable interest because addition of PVP results in the formation of micelles at lower concentration than the critical micelle concentration (CMC) of the free surfactant the mechanism is described as a "necklace" of hemimicelles along the polymer chain, the hemimicelles being surrounded to some extent with PVP (109). The effective lowering of the CMC increases the surfactant s apparent activity at interfaces. PVP will increase foaming of anionic surfactants for this reason. [Pg.532]

Further addition of fatty acid eventually results in the formation of micelles. Micelles formed from an amphipathic lipid in water position the hydrophobic tails in the center of the lipid aggregation with the polar head groups facing outward. Amphipathic molecules that form micelles are characterized by a unique critical micelle concentration, or CMC. Below the CMC, individual lipid molecules predominate. Nearly all the lipid added above the CMC, however, spontaneously forms micelles. Micelles are the preferred form of aggregation in water for detergents and soaps. Some typical CMC values are listed in Figure 9.3. [Pg.261]

One of the most important characteristics of the emulsifier is its CMC, which is defined as the critical concentration value below which no micelle formation occurs. The critical micelle concentration of an emulsifier is determined by the structure and the number of hydrophilic and hydrophobic groups included in the emulsifier molecule. The hydrophile-lipophile balance (HLB) number is a good criterion for the selection of proper emulsifier. The HLB scale was developed by W. C. Griffin [46,47]. Based on his approach, the HLB number of an emulsifier can be calculated by dividing... [Pg.196]

In the latter function, the reagent behaves as a surfactant and forms a cationic micelle at a concentration above the critical micelle concentration (1 x 10 4M for CTMB). The complexation reactions occurring on the surface of the micelles differ from those in simple aqueous solution and result in the formation of a complex of higher ligand to metal ratio than in the simple aqueous system this effect is usually accompanied by a substantial increase in molar absorptivity of the metal complex. [Pg.172]

In highly diluted solutions the surfactants are monodispersed and are enriched by hydrophil-hydrophobe-oriented adsorption at the surface. If a certain concentration which is characteristic for each surfactant is exceeded, the surfactant molecules congregate to micelles. The inside of a micelle consists of hydrophobic groups whereas its surface consists of hydrophilic groups. Micelles are dynamic entities that are in equilibrium with their surrounded concentration. If the solution is diluted and remains under the characteristic concentration, micelles dissociate to single molecules. The concentration at which micelle formation starts is called critical micelle concentration (cmc). Its value is characteristic for each surfactant and depends on several parameters [189-191] ... [Pg.88]

As an even more explicit example of this effect Figure 6 shows that EPM is able to reproduce fairly well the experimentally observed dependence of the particle number on surfactant concentration for a different monomer, namely methyl methacrylate (MMA). The polymerization was carried at 80°C at a fixed concentration of ammonium persulfate initiator (0.00635 mol dm 3). Because methyl methacrylate is much more water soluble than styrene, the drop off in particle number is not as steep around the critical micelle concentration (22.) In this instance the experimental data do show a leveling off of the particle number at high and low surfactant concentrations as expected from the theory of particle formation by coagulative nucleation of precursor particles formed by homogeneous nucleation, which has been incorporated into EPM. [Pg.375]

Surfactants greatly improve the performance of trans-cinnamaldehyde as a corrosion inhibitor for steel in HCl [741,1590,1591]. They act by enhancing the adsorption at the surface. Increased solubility or dispersibility of the inhibitor is an incidental effect. N-dodecylpyridinium bromide is effective in this aspect far below its critical micelle concentration, probably as a result of electrostatic adsorption of the monomeric form of N-dodecylpyridinium bromide. This leads to the formation of a hydrophobic monolayer, which attracts the inhibitor. On the other hand, an ethoxylated nonylphenol, a nonionic surfactant, acts by incorporating the inhibitor into micelles, which themselves adsorb on the steel surface and facilitate the adsorption of trans-cinnamaldehyde. [Pg.87]

Recently, the newly developed time-resolved quasielastic laser scattering (QELS) has been applied to follow the changes in the surface tension of the nonpolarized water nitrobenzene interface upon the injection of cetyltrimethylammonium bromide [34] and sodium dodecyl sulfate [35] around or beyond their critical micelle concentrations. As a matter of fact, the method is based on the determination of the frequency of the thermally excited capillary waves at liquid-liquid interfaces. Since the capillary wave frequency is a function of the surface tension, and the change in the surface tension reflects the ion surface concentration, the QELS method allows us to observe the dynamic changes of the ITIES, such as the formation of monolayers of various surfactants [34]. [Pg.426]

A similar multiphase complication that should be kept in mind when discussing solutions at finite concentrations is possible micelle formation. It is well known that for many organic solutes in water, when the concentration exceeds a certain solute-dependent value, called the critical micelle concentration (cmc), the solute molecules are not distributed in a random uncorrelated way but rather aggregate into units (micelles) in which their distances of separation and orientations with respect to each other and to solvent molecules have strong correlations. Micelle formation, if it occurs, will clearly have a major effect on the apparent activity coefficient but the observation of the phenomenon requires more sophisticated analytical techniques than observation of, say, liquid-liquid phase separation. [Pg.79]

What characterizes surfactants is their ability to adsorb onto surfaces and to modify the surface properties. At the gas/liquid interface this leads to a reduction in surface tension. Fig. 4.1 shows the dependence of surface tension on the concentration for different surfactant types [39]. It is obvious from this figure that the nonionic surfactants have a lower surface tension for the same alkyl chain length and concentration than the ionic surfactants. The second effect which can be seen from Fig. 4.1 is the discontinuity of the surface tension-concentration curves with a constant value for the surface tension above this point. The breakpoint of the curves can be correlated to the critical micelle concentration (cmc) above which the formation of micellar aggregates can be observed in the bulk phase. These micelles are characteristic for the ability of surfactants to solubilize hydrophobic substances in aqueous solution. So the concentration of surfactant in the washing liquor has at least to be right above the cmc. [Pg.94]


See other pages where Critical micelle formation is mentioned: [Pg.457]    [Pg.457]    [Pg.33]    [Pg.3141]    [Pg.383]    [Pg.152]    [Pg.180]    [Pg.182]    [Pg.1952]    [Pg.263]    [Pg.457]    [Pg.457]    [Pg.33]    [Pg.3141]    [Pg.383]    [Pg.152]    [Pg.180]    [Pg.182]    [Pg.1952]    [Pg.263]    [Pg.480]    [Pg.126]    [Pg.800]    [Pg.148]    [Pg.237]    [Pg.361]    [Pg.81]    [Pg.800]    [Pg.528]    [Pg.191]    [Pg.146]    [Pg.281]    [Pg.268]    [Pg.461]    [Pg.248]    [Pg.549]    [Pg.354]    [Pg.189]    [Pg.144]    [Pg.83]    [Pg.182]    [Pg.207]   
See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Micelle Formation and Critical Micellar Concentration (CMC) of Bile Salts

Micelle formation, critical concentration

Micelle, formation

© 2024 chempedia.info