Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants critical micelle concentration

R. Wagner, Y. Wu, L. Richter, J. Reiners, J. Weissmuller, A. De Montigny, Appl. Organometal. Chem., 1999, 13(1), 21-28. SUicon-modified carbohydrate surfactants. VIII. equilibrium wetting of perfluorinated solid surfaces by solutions of surfactants above and below the critical micelle concentration-surfactant distribution between liquid-vapor and solid-Uquid interfaces. ... [Pg.202]

Correlation equations relating surfactant chemical structure to performance characteristics and physical properties have been established. One atmosphere foaming properties of alcohol ethoxyl-ates and alcohol ethoxylate derivatives have been related to surfactant hydrophobe carbon chain length, ethylene oxide content, aqueous phase salinity, and temperature. Similar correlations have been established for critical micelle concentration, surfactant cloud point, and surfactant adsorption. [Pg.181]

In electrochemical studies, surfactant will nearly always be adsorbed to the electrode-solution interface . At extreme positive or negative applied potentials and surfactant concentrations well above the critical micelle concentration, surfactant molecules may be organized on the electrode surface in thick aggregates that profoundly affect the electrochemistry . ... [Pg.566]

The concentration at which micellization commences is called the critical micelle concentration, erne. Any experimental teclmique sensitive to a solution property modified by micellization or sensitive to some probe (molecule or ion) property modified by micellization is generally adequate to quantitatively estimate the onset of micellization. The detennination of erne is usually done by plotting the experimentally measured property or response as a hmction of the logarithm of the surfactant concentration. The intersection of asymptotes fitted to the experimental data or as a breakpoint in the experimental data denotes the erne. A partial listing of experimental... [Pg.2580]

The issue of water in reverse micellar cores is important because water swollen reverse micelles (reverse microemulsions) provide means for carrying almost any water-soluble component into a predominantly oil-continuous solution (see discussions of microemulsions and micellar catalysis below). In tire absence of water it appears tliat premicellar aggregates (pairs, trimers etc.) are commonly found in surfactant-in-oil solutions [47]. Critical micelle concentrations do exist (witli some exceptions). [Pg.2591]

Mukeqee P and Mysels K J 1970 Critical Micelle Concentrations of Aqueous Surfactant Systems (National Standard Reference Data System, National Bureau of Standards Circular No 36) (Springfield, VA National Teehnieal Information Serviee)... [Pg.2604]

Dominguez, A. Fernandez, A. Gonzalez, N. et al. Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques, /. Chem. Educ. 1997, 74, 1227-1231. [Pg.447]

At low concentrations surfactant molecules adsorbed at the surface are in equilibrium with other molecules in solution. Above a threshold concentration, called the critical micelle concentration (cmc, for short), another equilibrium must be considered. This additional equilibrium is that between individual molecules in solution and clusters of emulsifier molecules known as micelles. [Pg.398]

Emulsification is the process by which a hydrophobic monomer, such as styrene, is dispersed into micelles and monomer droplets. A measure of a surfactant s abiUty to solubilize a monomer is its critical micelle concentration (CMC). Below the CMC the surfactant is dissolved ia the aqueous phase and does not serve to solubilize monomer. At and above the CMC the surfactant forms spherical micelles, usually 50 to 200 soap molecules per micelle. Many... [Pg.24]

One reason for widespread interest in the use of surfactants as gas mobihty control agents is the effectiveness at concentrations of <0.1 wt % (156,163). Some surfactants are effective below their critical micelle concentration (164). This low chemical requirement can significantly improve process economics. [Pg.193]

Ahphatic amine oxides behave as typical surfactants in aqueous solutions. Below the critical micelle concentration (CMC), dimethyl dodecyl amine oxide exists as single molecules. Above this concentration micellar (spherical) aggregates predorninate in solution. Ahphatic amine oxides are similar to other typical nonionic surfactants in that their CMC decreases with increasing temperature. [Pg.189]

Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ... Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ...
Critical Micelle Concentration. The rate at which the properties of surfactant solutions vary with concentration changes at the concentration where micelle formation starts. Surface and interfacial tension, equivalent conductance (50), dye solubilization (51), iodine solubilization (52), and refractive index (53) are properties commonly used as the basis for methods of CMC determination. [Pg.238]

Anionic Surfactants. PVP also interacts with anionic detergents, another class of large anions (108). This interaction has generated considerable interest because addition of PVP results in the formation of micelles at lower concentration than the critical micelle concentration (CMC) of the free surfactant the mechanism is described as a "necklace" of hemimicelles along the polymer chain, the hemimicelles being surrounded to some extent with PVP (109). The effective lowering of the CMC increases the surfactant s apparent activity at interfaces. PVP will increase foaming of anionic surfactants for this reason. [Pg.532]

Surfactant values are at the critical micelle concentration (CMC) in aqueous solution surfactant/defoamer values are at 0.1% concentration in aqueous solution. [Pg.465]

MeutralSoluble Salts. So dium sulfate [7757-82-6] and, to a considerably lesser extent, sodium chloride [7647-14-5] are the principal neutral soluble salts used in laundering compositions. They are often considered to be fillers although they perform an important standardizing function enabling the formulator to manufacture powders of a desired, controlled density. Sodium sulfate, in addition, lowers the critical micelle concentration of organic surfactants and thus the concentration at which effective washing can be achieved. [Pg.528]

Surfactants lower the surface tension of water, typically from 72 to ca 30—35 mN/m (= dyn/cm), and many surfactants have a strong effect on the contact angle when used at low concentrations. Both changes help dewatering. Too much surfactant, near or above the critical micelle concentration... [Pg.21]

Finally, some general rules for the amount of surfactant appear to be vaHd (13). For anionic surfactants the average size of droplets is reduced for an increase of surfactant concentration up to the critical micellization concentration, whereas for nonionic surfactants a reduction occurs also for concentrations in excess of this value. The latter case may reflect the solubiHty of the nonionic surfactant in both phases, causing a reduction of interfacial tension at higher concentrations, or may reflect the stabilizing action of the micelles per se. [Pg.197]

When apphed to a nonionic surfactant in pure water at concentrations below the critical micelle concentration, Eq. (22-42) simplifies into Eq. (22-43)... [Pg.2018]

In the latter function, the reagent behaves as a surfactant and forms a cationic micelle at a concentration above the critical micelle concentration (1 x 10 4M for CTMB). The complexation reactions occurring on the surface of the micelles differ from those in simple aqueous solution and result in the formation of a complex of higher ligand to metal ratio than in the simple aqueous system this effect is usually accompanied by a substantial increase in molar absorptivity of the metal complex. [Pg.172]

The pioneering work on amphiphilic polyelectrolytes goes back to 1951, when Strauss et al. [25] first synthesized amphiphilic polycations by quaternization of poly(2-vinylpyridine) with n-dodecyl bromide. They revealed that the long alkyl side chains attached to partially quaternized poly(vinylpyridine)s tended to aggregate in aqueous solution so that the polymers assumed a compact conformation when the mole fraction of the hydrophobic side chains exceeded a certain critical value. Thus, Strauss et al. became the first to show experimentally the intramolecular micellation of amphiphilic polymers and the existence of a critical content of hydrophobic residues which may be compared to the critical micelle concentration of ordinary surfactants. They called such amphiphilic polyelectrolytes polysoaps [25],... [Pg.63]

Very large solvent effects arc also observed for systems where the monomers can aggregate either with themselves or another species. For example, the apparent kp for polymerizable surfactants, such as certain vinyl pyridinium salts and alkyl salts of dimethylaminoalkyl methacrylates, in aqueous solution above the critical micelle concentration (cmc) are dramatically higher than they are below the cmc in water or in non-aqueous media.77 This docs not mean that the value for the kp is higher. The heterogeneity of the medium needs to be considered. In the micellar system, the effective concentration of double bonds in the vicinity of the... [Pg.426]

If the coupling component is not ionic, however, more dramatic effects occur, as found by Hashida et al. (1979) and by Tentorio et al. (1985). Hashida used N,N-bis(2-hydroxyethyl)aniline, while Tentorio and coworkers took 1-naphthylamine and l-amino-2-methylnaphthalene as coupling components. With cationic arenediazo-nium salts and addition of sodium dodecyl sulfate (SDS), rate increases up to 1100-fold were measured in cases where the surfactant concentration was higher than the critical micelle concentration (cmc). Under the same conditions the reaction... [Pg.376]

In highly diluted solutions the surfactants are monodispersed and are enriched by hydrophil-hydrophobe-oriented adsorption at the surface. If a certain concentration which is characteristic for each surfactant is exceeded, the surfactant molecules congregate to micelles. The inside of a micelle consists of hydrophobic groups whereas its surface consists of hydrophilic groups. Micelles are dynamic entities that are in equilibrium with their surrounded concentration. If the solution is diluted and remains under the characteristic concentration, micelles dissociate to single molecules. The concentration at which micelle formation starts is called critical micelle concentration (cmc). Its value is characteristic for each surfactant and depends on several parameters [189-191] ... [Pg.88]

Figure 20 shows the plot of the surface tension vs. the logarithm of the concentration (or-lg c-isotherms) of sodium alkanesulfonates C,0-C15 at 45°C. In accordance with the general behavior of surfactants, the interfacial activity increases with growing chain length. The critical micelle concentration (cM) is shifted to lower concentration values. The typical surface tension at cM is between 38 and 33 mN/m. The ammonium alkanesulfonates show similar behavior, though their solubility is much better. The impact of the counterions is twofold First, a more polarizable counterion lowers the cM value (Fig. 21), while the aggregation number of the micelles rises. Second, polarizable and hydrophobic counterions, such as n-propyl- or isopropylammonium and n-butylammonium ions, enhance the interfacial activity as well (Fig. 22). Hydrophilic counterions such as 2-hydroxyethylammonium have the opposite effect. Table 14 summarizes some data for the dodecane 1-sulfonates. Figure 20 shows the plot of the surface tension vs. the logarithm of the concentration (or-lg c-isotherms) of sodium alkanesulfonates C,0-C15 at 45°C. In accordance with the general behavior of surfactants, the interfacial activity increases with growing chain length. The critical micelle concentration (cM) is shifted to lower concentration values. The typical surface tension at cM is between 38 and 33 mN/m. The ammonium alkanesulfonates show similar behavior, though their solubility is much better. The impact of the counterions is twofold First, a more polarizable counterion lowers the cM value (Fig. 21), while the aggregation number of the micelles rises. Second, polarizable and hydrophobic counterions, such as n-propyl- or isopropylammonium and n-butylammonium ions, enhance the interfacial activity as well (Fig. 22). Hydrophilic counterions such as 2-hydroxyethylammonium have the opposite effect. Table 14 summarizes some data for the dodecane 1-sulfonates.
The Stauff-Klevens equation is valid for the critical micelle concentration of homologous surfactants with the same ionic head group ... [Pg.193]

A positive value of ME means that the insertion of a hetero atom or group makes the molecule more lipophilic. If ME is negative, the hetero surfactant is more hydrophilic. In general, hetero atom insertion hydrophilizes the surfactant molecule as does the shift of the hetero group to the middle of the carbon chain [71]. ME values are temperature-dependent. / and ME values can also be useful to take into account the influence of various cations on the critical micelle concentration. [Pg.194]


See other pages where Surfactants critical micelle concentration is mentioned: [Pg.63]    [Pg.369]    [Pg.366]    [Pg.63]    [Pg.369]    [Pg.366]    [Pg.242]    [Pg.415]    [Pg.480]    [Pg.2572]    [Pg.126]    [Pg.447]    [Pg.147]    [Pg.151]    [Pg.427]    [Pg.149]    [Pg.237]    [Pg.361]    [Pg.529]    [Pg.651]    [Pg.983]    [Pg.146]    [Pg.442]    [Pg.187]   
See also in sourсe #XX -- [ Pg.173 ]

See also in sourсe #XX -- [ Pg.661 ]

See also in sourсe #XX -- [ Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.237 , Pg.388 , Pg.389 , Pg.422 , Pg.423 , Pg.424 , Pg.425 , Pg.426 ]

See also in sourсe #XX -- [ Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.237 , Pg.388 , Pg.389 , Pg.422 , Pg.423 , Pg.424 , Pg.425 , Pg.426 ]

See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Anionic-nonionic surfactant mixtures critical micelle concentration

Critical concentration

Critical micell concentration

Critical micelle concentration

Critical micelle concentration Gemini surfactants

Critical micelle concentration amphoteric surfactants

Critical micelle concentration cationic surfactant binding

Critical micelle concentration micellization

Critical micelle concentration mixed surfactant values

Critical micelle concentration mixed surfactants

Critical micelle concentration pure surfactant solution

Critical micelle concentration surfactant solutions

Critical micelle concentration surfactant surface tension

Critical micelle concentration surfactant type

Critical micelle concentration surfactant-polymer systems

Critical micelle concentration surfactants, basic properties

Critical micellization concentrations

Micelle concentration

Micelles critical micelle concentration

Micellization surfactants

Polymeric surfactants critical micelle concentration

Polymerizable surfactants critical micelle concentration

Sugar surfactants critical micelle concentration

Surfactant concentration

Surfactants concentrated

Zwitterionic surfactants critical micelle concentration

© 2024 chempedia.info