Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical concentration, liquid-crystalline

In recent studies, Friberg and co-workers (J, 2) showed that the 21 carbon dicarboxylic acid 5(6)-carboxyl-4-hexyl-2-cyclohexene-1-yl octanoic acid (C21-DA, see Figure 1) exhibited hydrotropic or solubilizing properties in the multicomponent system(s) sodium octanoate (decanoate)/n-octanol/C2i-DA aqueous disodium salt solutions. Hydrotropic action was observed in dilute solutions even at concentrations below the critical micelle concentration (CMC) of the alkanoate. Such action was also observed in concentrates containing pure nonionic and anionic surfactants and C21-DA salt. The function of the hydrotrope was to retard formation of a more ordered structure or mesophase (liquid crystalline phase). [Pg.117]

If one follows the solution viscosity in concentrated sulfuric acid with increasing polymer concentration, then one observes first a rise, afterwards, however, an abrupt decrease (about 5 to 15%, depending on the type of polymers and the experimental conditions). This transition is identical with the transformation of an optical isotropic to an optical anisotropic liquid crystalline solution with nematic behavior. Such solutions in the state of rest are weakly clouded and become opalescent when they are stirred they show birefringence, i.e., they depolarize linear polarized light. The two phases, formed at the critical concentration, can be separated by centrifugation to an isotropic and an anisotropic phase. A high amount of anisotropic phase is desirable for the fiber properties. This can be obtained by variation of the molecular weight, the solvent, the temperature, and the polymer concentration. [Pg.288]

The bis(2-ethylhexyl) sodium sulfosuccinate system was initially investigated because its structure of liquid crystalline solution phases and mechanism of solubilization with water had been reported by Rogers and Winsor (10). In our studies, we substituted methanol for water. Table I lists critical micelle concentrations for bis(2-ethylhexyl) sodium sulfosuccinate, triethylammonium linoleate and tetradecyldimethylammonium linoleate in methanol and 2-octanol at 25°C. Literature references for critical micelle concentrations in methanol are sparse, and it has even been suggested that in polar solvents such as ethanol, either micellization does not occur or, if it does, only to a small degree (4). The data of Table I show that micellization occurs in methanol at low concentrations. [Pg.285]

In contrast to the above-described kinetic stability, colloids may also be thermodynamically stable. A stable macromolecular solution is an example we have already discussed. Formation of micelles beyond the critical micelle concentration is another example of the formation of a thermodynamically stable colloidal phase. However, when the concentration of the (say, initially spherical) micelles increases with addition of surfactants to the system, the spherical micelles may become thermodynamically unstable and may form other forms of (thermodynamically stable) surfactant assemblies of more complex shapes (such as cylindrical micelles, liquid-crystalline phases, bilayers, etc.). [Pg.18]

For ionic surfactants micellization is surprisingly little affected by temperature considering that it is an aggregation process later we see that salt has a much stronger influence. Only if the solution is cooled below a certain temperature does the surfactant precipitate as hydrated crystals or a liquid crystalline phase (Fig. 12.4). This leads us to the Krafft temperature1 also called Krafft point [526]. The Krafft temperature is the point at which surfactant solubility equals the critical micelle concentration. Below the Krafft temperature the solubility is quite low and the solution appears to contain no micelles. Surfactants are usually significantly less effective in most applications below the Krafft temperature. Above the Krafft temperature, micelle formation becomes possible and the solubility increases rapidly. [Pg.252]

For a specific polymer, critical concentrations and temperatures depend on the solvent. In Fig. 15.42b the concentration condition has already been illustrated on the basis of solution viscosity. Much work has been reported on PpPTA in sulphuric acid and of PpPBA in dimethylacetamide/lithium chloride. Besides, Boerstoel (1998), Boerstoel et al. (2001) and Northolt et al. (2001) studied liquid crystalline solutions of cellulose in phosphoric acid. In Fig. 16.27 a simple example of the phase behaviour of PpPTA in sulphuric acid (see also Chap. 19) is shown (Dobb, 1985). In this figure it is indicated that a direct transition from mesophase to isotropic liquid may exist. This is not necessarily true, however, as it has been found that in some solutions the nematic mesophase and isotropic phase coexist in equilibrium (Collyer, 1996). Such behaviour was found by Aharoni (1980) for a 50/50 copolymer of //-hexyl and n-propylisocyanate in toluene and shown in Fig. 16.28. Clearing temperatures for PpPTA (Twaron or Kevlar , PIPD (or M5), PABI and cellulose in their respective solvents are illustrated in Fig. 16.29. The rigidity of the polymer chains increases in the order of cellulose, PpPTA, PIPD. The very rigid PIPD has a LC phase already at very low concentrations. Even cellulose, which, in principle, is able to freely rotate around the ether bond, forms a LC phase at relatively low concentrations. [Pg.635]

Hence, the interaction between lipid molecules is very similar in these foam bilayers and it can be supposed that the AF foam bilayers are in the liquid crystalline state within the temperature range studied. This assumption is in agreement with the fact that amniotic fluid contains substantial amount of unsaturated phospholipids, which as known [45], lower considerably the temperature of the chain-melting phase transition. Bearing in mind the similarity of the phase behaviour of a phosphatidylcholine aqueous dispersion and foam bilayers [38-40], it can be supposed that at the temperatures which are important for in vivo systems, the foam bilayers are in the liquid crystalline state. This assumption allows to determine the critical concentration of phosphatidylcholines in amniotic fluid, necessary for formation of a foam bilayer by extrapolation of the Arrhenius dependence of C, for AF foam bilayers to 37°C. Thus, at 37°C C, = 19.9 jxg cm 3 and d, = 1.47. This value of C, at 37°C corresponds to the lower limit (found by other methods [46,47]) of phosphatidylcholine concentration which permits to classify as mature a sample of amniotic fluid. The above value... [Pg.747]

It was, however, observed that such systems under appropriate conditions of concentration, solvent, molecular weight, temperature, etc. form a liquid crystalline solution. Perhaps a little digression is in order here to say a few words about liquid crystals. A liquid crystal has a structure intermediate between a three-dimensionally ordered crystal and a disordered isotropic liquid. There are two main classes of liquid crystals lyotropic and thermotropic. Lyotropic liquid crystals are obtained from low viscosity polymer solutions in a critical concentration range while thermotropic liquid crystals are obtained from polymer melts where a low viscosity phase forms over a certain temperature range. Aromatic polyamides and aramid type fibers are lyotropic liquid crystal polymers. These polymers have a melting point that is high and close to their decomposition temperature. One must therefore spin these from a solution in an appropriate solvent such as sulfuric acid. Aromatic polyesters, on the other hand, are thermotropic liquid crystal polymers. These can be injection molded, extruded or melt spun. [Pg.81]

The solution behavior of low molecular weight amphiphilic molecules has been intensively investigated in the past (12-16) with respect to the formation of liquid crystalline phases. In very dilute aqueous solutions, the amphiphiles are molecularly dispersed dissolved. Above the critical micelle concentration (CMC), the amphiphiles associate and form micelles (Figure 4) of spherical, cylindrical or disc-like shape. The shape and dimension of the micelles, as a function of concentration and temperature, are determined by the "hydrophilic-hydrophobic" balance of the amphiphilic molecules. The formation of spherical aggregates is preferred with increasing volume fraction of the hydrophilic head group of the amphiphile, because the... [Pg.7]

The phase behavior is similar to that of a lower critical solution temperature (LCST), hence it is different from the above systems. The HPC/water system is an interesting model system because of the rich variety of phase structure 01 the material. HPC is a semicrystalline polymer in the solid state (7), but exhibits thermotropic liquid crystalline character at elevated temperatures below the melting point (8). It shows isotropic phase in dilute solutions, but forms an ordered liquid crystalline phase with cholesteric structure in concentrated solutions (4). [Pg.267]

Orientational order appears in the solutions of rigid-chain polymers because a random mutual arrangement of their macromolecules is possible only up to a certain concentration of the solution. To retain a minimal volume (minimal free energy) above a certain critical concentration, asymmetric macromolecules must acquire an ordered mutual arrangement, which corresponds to a transition to the state typical for liquid crystals. In this case the solution becomes anisotropic. The degree of this anisotropy is still less than strict three-dimensional ordering typical of crystalline systems, but at the same time it differs from that of the isotropic state typical of amorphous systems. [Pg.77]

Fig. 10. The concentration dependence of viscosity for a PBA solution in dimethylacetamide (-(-LiCl) C is the critical concentration of the transition into the liquid crystalline state, U is the maximum viscosity at the point of the liquid crystalline transitions (according to >)... Fig. 10. The concentration dependence of viscosity for a PBA solution in dimethylacetamide (-(-LiCl) C is the critical concentration of the transition into the liquid crystalline state, U is the maximum viscosity at the point of the liquid crystalline transitions (according to >)...
Transition into the liquid-crystalline state by reaching some critical concentration of polymers... [Pg.91]

Figure 16 shows a schematic diagram of phase transformations for rigid-chain polymers separated from isotropic solutions by introducing a nonsolvent into the system (this is a usual method of obtaining fibres and films) (cf. >). The initial isotropic solution with the polymer concentration V2 and the value of the Huggins-Flory parameter is in the monophase region. The critical concentration of the transition into liquid crystalline state for this system is v. When a nonsolvent is introduced, i.e. when x is increased up to the value >0.5 (x ), two routes of the phase transition... [Pg.96]

Iv) Liquid crystalline solutions (v > v ) in which the molecules spontaneously organize into an orientationally ordered phase (nematic) comprising domains in which the orientation of the molecules is along a single direction, but the centre of mass positions are random. An estimate for the critical concentration for transition to the nematic phase is V l = A15L b [13]. [Pg.789]


See other pages where Critical concentration, liquid-crystalline is mentioned: [Pg.244]    [Pg.254]    [Pg.24]    [Pg.8]    [Pg.289]    [Pg.265]    [Pg.283]    [Pg.244]    [Pg.163]    [Pg.147]    [Pg.134]    [Pg.272]    [Pg.120]    [Pg.536]    [Pg.505]    [Pg.683]    [Pg.3]    [Pg.304]    [Pg.322]    [Pg.84]    [Pg.579]    [Pg.80]    [Pg.82]    [Pg.99]    [Pg.3]    [Pg.5]    [Pg.198]    [Pg.177]    [Pg.2798]    [Pg.38]    [Pg.46]    [Pg.61]    [Pg.95]    [Pg.789]   


SEARCH



Critical concentration

© 2024 chempedia.info