Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions effects

The use of a chiral dienophile or enophile in the Diels-Alder reaction effects asymmetric induction. This asymmetric Diels-Alder chemistry, pioneered by Korolew and... [Pg.223]

Konovalov, A. I., Kiselev, V. D. Diels-Alder reaction. Effect of internal and external factors on the reactivity of diene-dienophile systems. Russ. Chem. Bull. 2003, 52, 293-311. [Pg.576]

This chapter introduces the experimental work described in the following chapters. Some mechanistic aspects of the Diels-Alder reaction and Lewis-acid catalysis thereof are discussed. This chapter presents a critical survey of the literature on solvent ejfects on Diels-Alder reactions, with particular emphasis on the intriguing properties of water in connection with their effect on rate and selectivity. Similarly, the ejfects of water on Lewis acid - Lewis base interactions are discussed. Finally the aims of this thesis are outlined. [Pg.1]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

In 1961 Berson et al. were the first to study systematically the effect of the solvent on the endo-exo selectivity of the Diels-Alder reaction . They interpreted the solvent dependence of the endo-exo ratio by consideririg the different polarities of the individual activated complexes involved. The endo activated complex is of higher polarity than the exo activated complex, because in the former the dipole moments of diene and dienophile are aligned, whereas in the latter they are pointing in... [Pg.10]

Unfortunately, the number of mechanistic studies in this field stands in no proportion to its versatility" . Thermodynamic analysis revealed that the beneficial effect of Lewis-acids on the rate of the Diels-Alder reaction can be primarily ascribed to a reduction of the enthalpy of activation ( AAH = 30-50 kJ/mole) leaving the activation entropy essentially unchanged (TAAS = 0-10 kJ/mol)" . Solvent effects on Lewis-acid catalysed Diels-Alder reactions have received very little attention. A change in solvent affects mainly the coordination step rather than the actual Diels-Alder reaction. Donating solvents severely impede catalysis . This observation justifies the widespread use of inert solvents such as dichloromethane and chloroform for synthetic applications of Lewis-acid catalysed Diels-Alder reactions. [Pg.13]

Special effects of water on Diels-Alder reactions... [Pg.18]

The extreme influence water can exert on the Diels-Alder reaction was rediscovered by Breslow in 1980, much by coincidence . Whale studying the effect of p-cyclodextrin on the rate of a Diels-Alder reaction in water, accidentally, the addition of the cyclodextrin was omitted, but still rate constants were observed that were one to two orders of magnitude larger than those obtained in organic solvents. The investigations that followed this remarkable observation showed that the acceleration of Diels-Alder reactions by water is a general phenomenon. Table 1.2 contains a selection from the multitude of Diels-Alder reactions in aqueous media that have been studied Note that the rate enhancements induced by water can amount up to a factor 12,800 compared to organic solvents (entry 1 in Table 1.2). [Pg.19]

Breslow immediately grasped the significance of his observation. He interpreted this discovery in terms of a hydrophobic effect Since in the Diels-Alder reaction. .. the transition state. .. brings together two nonpolar groups, one might expect that in water this reaction could be accelerated by hydrophobic interactions ". ... [Pg.19]

Breslow supported this suggestion by demonstrating that the cycloaddition can be further accelerated by adding anti cliaotropic salts such as lithium chloride, whereas chaotropic salts such as guanidium chloride led to a retardation " "" ". On the basis of these experiments Breslow excluded all other possible explanations for the special effect of water on the Diels-Alder reaction " . [Pg.19]

Alternatively, authors have repeatedly invoked the internal pressure of water as an explanation of the rate enhancements of Diels-Alder reactions in this solvent ". They were probably inspired by the well known large effects of the external pressure " on rates of cycloadditions. However, the internal pressure of water is very low and offers no valid explanation for its effect on the Diels-Alder reaction. The internal pressure is defined as the energy required to bring about an infinitesimal change in the volume of the solvents at constant temperature pi = (r)E / Due to the open and... [Pg.20]

Tire importance of hydrophobic interactions in the aqueous acceleration is further demonstrated by a qualitative study described by Jenner on the effect of pressure on Diels-Alder reactions in water and a number of organic solvents. Invariably, the reactions in water were less accelerated by pressure than those in organic solvents, which is in line with the notion that pressure diminishes hydrophobic interactions. [Pg.22]

In summary, a wealtli of experimental data as well as a number of sophisticated computer simulations univocally indicate that two important effects underlie the acceleration of Diels-Alder reactions in aqueous media hydrogen bonding and enforced hydrophobic interactionsIn terms of transition state theory hydrophobic hydration raises the initial state more tlian tlie transition state and hydrogen bonding interactions stabilise ftie transition state more than the initial state. The highly polarisable activated complex plays a key role in both of these effects. [Pg.24]

Three years after the Breslow report on the large effects of water on the rate of the Diels-Alder reaction, he also demonstrated tliat the endo-exo selectivity of this reaction benefits markedly from employing aqueous media . Based on the influence of salting-in and saltirg-out agents, Breslow pinpoints hydrophobic effects as the most important contributor to the enhanced endo-exo... [Pg.24]

Studies on solvent effects on the endo-exo selectivity of Diels-Alder reactions have revealed the importance of hydrogen bonding interactions besides the already mentioned solvophobic interactions and polarity effects. Further evidence of the significance of the former interactions comes from computer simulations" and the analogy with Lewis-acid catalysis which is known to enhance dramatically the endo-exo selectivity (Section 1.2.4). [Pg.25]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

The effect of additives on the selectivity of the Diels-Alder reaction in water has not received much... [Pg.26]

Apart from the thoroughly studied aqueous Diels-Alder reaction, a limited number of other transformations have been reported to benefit considerably from the use of water. These include the aldol condensation , the benzoin condensation , the Baylis-Hillman reaction (tertiary-amine catalysed coupling of aldehydes with acrylic acid derivatives) and pericyclic reactions like the 1,3-dipolar cycloaddition and the Qaisen rearrangement (see below). These reactions have one thing in common a negative volume of activation. This observation has tempted many authors to propose hydrophobic effects as primary cause of ftie observed rate enhancements. [Pg.27]

Mechanistic investigations have focused on the two pericyclic reactions, probably as a consequence of the close mechanistic relation to the so successful aqueous Diels-Alder reaction. A kinetic inquest into the effect of water on several 1,3-dipolar cycloadditions has been performed by Steiner , van... [Pg.27]

The most effective Lewis-acid catalysts for the Diels-Alder reaction are hard cations. Not surprisingly, they coordinate to hard nuclei on the reacting system, typically oxygen atoms. Consequently, hard solvents are likely to affect these interactions significantly. Table 1.4 shows a selection of some solvents ranked according to their softness. Note that water is one of the hardest... [Pg.29]

A combination of the promoting effects of Lewis acids and water is a logical next step. However, to say the least, water has not been a very popular medium for Lewis-acid catalysed Diels-Alder reactions, which is not surprising since water molecules interact strongly with Lewis-acidic and the Lewis-basic atoms of the reacting system. In 1994, when the research described in this thesis was initiated, only one example of Lewis-acid catalysis of a Diels-Alder reaction in water was published Lubineau and co-workers employed lanthanide triflates as a catalyst for the Diels-Alder reaction of glyoxylate to a relatively unreactive diene . No comparison was made between the process in water and in organic solvents. [Pg.31]


See other pages where Diels-Alder reactions effects is mentioned: [Pg.616]    [Pg.616]    [Pg.2]    [Pg.4]    [Pg.6]    [Pg.8]    [Pg.8]    [Pg.8]    [Pg.8]    [Pg.9]    [Pg.9]    [Pg.10]    [Pg.11]    [Pg.11]    [Pg.12]    [Pg.12]    [Pg.19]    [Pg.19]    [Pg.22]    [Pg.22]    [Pg.23]    [Pg.23]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.27]    [Pg.31]   
See also in sourсe #XX -- [ Pg.236 ]

See also in sourсe #XX -- [ Pg.189 ]

See also in sourсe #XX -- [ Pg.1202 ]




SEARCH



Alkenes, electronic effects Diels-Alder reaction

Diels-Alder Reaction Kinetic isotope effect

Diels-Alder cycloaddition reaction substituent effects

Diels-Alder cycloaddition reactions, solvent effects

Diels-Alder reaction electronic effects

Diels-Alder reaction endo effect

Diels-Alder reaction entropy effects

Diels-Alder reaction hydrophobic effect

Diels-Alder reaction olefin substituent effects

Diels-Alder reaction orientation effects

Diels-Alder reaction pressure effects

Diels-Alder reaction steric effects

Diels-Alder reaction, isotope effects

Diels-Alder reactions Lewis acid effects

Diels-Alder reactions conformational effects

Diels-Alder reactions effect of ultrasonic irradiation

Diels-Alder reactions isotope effect studies

Diels-Alder reactions salt effects

Diels-Alder reactions solvent effects

Diels-Alder reactions substituent effects

Diels-Alder reactions, pressure effects, high

Lewis acid catalyzed Diels—Alder reaction effect

SPECIAL EFFECTS OF WATER ON DIELS-ALDER REACTIONS

Solvent effects in the Diels-Alder reaction

Solvent effects on Diels—Alder reactions

Substituent Effects on Reaction Rates of Diels-Alder Reactions

Substituent effects Diels-Alder reaction rates

Substituent effects on the Diels-Alder reaction

© 2024 chempedia.info