Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion-resistance Defects

The condition of the test metal is important. Clean metal samples with uniform finishes are preferred. The accelerating effects of surface defects lead to deceptive results in samples. The ratio of the area of a defect to the total surface area of the metal is much higlier in a sample than in any metal in service. This is an indication of the inaccuracy of tests made on metals with improper finishes. The sample metal should have the same type of heat treatment as the metal to be used in service. Different heat treatments have different effects on corrosion. Heat treatment may improve or reduce the corrosion resistance of a metal in an unpredictable manner. For the purpose of selectivity, a metal stress corrosion test may be performed. General trends of the performance of a material can be obtained from such tests however, it is difficult to reproduce the stress that actually will occur during service. [Pg.19]

Secondly, crystal defects might be expected to affect the corrosion behaviour of metals which owe their corrosion resistance to the presence of thin passive or thick protective films on their surface. The crystal defects and structural features discussed in Section 20.4 might, in principle, be expected to affect the thickness, strength, adhesion, porosity, composition, solubility, etc. of these surface films, and hence, in turn, the corrosion behaviour of the filmed metal surfaces. Clearly, this is the more common situation in practice. [Pg.36]

Metals which owe their good corrosion resistance to the presence of thin, passive or protective surface films may be susceptible to pitting attack when the surface film breaks down locally and does not reform. Thus stainless steels, mild steels, aluminium alloys, and nickel and copper-base alloys (as well as many other less common alloys) may all be susceptible to pitting attack under certain environmental conditions, and pitting corrosion provides an excellent example of the way in which crystal defects of various kinds can affect the integrity of surface films and hence corrosion behaviour. [Pg.49]

Localised attack can, however, occur on a surface of metal that is apparently uniform, and this occurs particularly with the highly passive metals that depend on a thin invisible protective film of oxide for their corrosion resistance. In such cases submicroscopic defects in the passive film may form the sites at which pits are initiated, thus giving rise to a situation similar to that shown in Fig. 1.46. [Pg.156]

Some investigatorshave advocated a type of accelerated test in which the specimens are coupled in turn to a noble metal such as platinum in the corrosive environment and the currents generated in these galvanic couples are used as a measure of the relative corrosion resistance of the metals studied. This method has the defects of other electrolytic means of stimulating anodic corrosion, and, in addition, there is a further distortion of the normal corrosion reactions and processes by reason of the differences between the cathodic polarisation characteristics of the noble metal used as an artificial cathode and those of the cathodic surfaces of the metal in question when it is corroding normally. [Pg.1021]

Impure metals and alloys exhibit all the structural features and crystal defects of the pure meteils already discussed. In addition, however, impure metals and alloys exhibit many structures which are not observed in pure metals, and which, in many instances, have an extremely important effect on the properties, particularly the corrosion resistance. However, before dealing with the structure of impure metals and alloys, it is necessary to consider the concept of metallurgical components, phases, constituents and equilibrium phase diagrams. [Pg.1270]

Applications Electrodeposition of cationic paint resin on automobiles (connected to the cathode) provides a uniform, defect-free coating with high corrosion resistance, but carries with it about 50 percent excess paint that must be washed off. UF is used to maintain the paint concentration in the paint bath while generating a permeate that is used for washing. The spent wash is fed back into the paint path (Zeman et al., Microjiltration and UltrajUtration, Marcel Dekker, New York, 1996). [Pg.50]

At present the iron-based alloys diffusion saturation by nitrogen is widely used in industry for the increase of strength, hardness, corrosion resistance of metal production. Inexhaustible and unrealized potentialities of nitriding are opened when applying it in combination with cold working [1-3], It is connected with one of important factors, which affects diffusion processes and phase formation and determines surface layer structure, mechanical and corrosion properties, like crystal defects and stresses [4, 5], The topical question in this direction is clarification of mechanisms of interstitial atoms diffusion and phase formation in cold worked iron and iron-based alloys under nitriding. [Pg.491]

Very pure single crystals have defects that can effect corrosion, but impurities and alloying elements, grain boundaries, second phases, and inclusions often have serious effects. Welded structures invariably corrode first at the welds because of metallurgical heterogeneities that exist in and near welds. The most susceptible site or defect in a metal will be the first to be attacked on exposure to a corrosive environment. Sometimes such attack simply results in innocuous removal of the susceptible material, leaving a surface with improved corrosion resistance. (Frankel)5... [Pg.370]

In addition to appearance, EP products offer other advantages such as an extremely smooth surface which minimizes the adherence of debris, an increased chromium to iron ratio which improves corrosion resistance, the creation of a passive layer that is free from iron contamination, improved ability to visually detect surface defects, and improved mechanical property performance through the minimization of stress risers. [Pg.2239]


See other pages where Corrosion-resistance Defects is mentioned: [Pg.156]    [Pg.156]    [Pg.348]    [Pg.342]    [Pg.115]    [Pg.339]    [Pg.906]    [Pg.907]    [Pg.638]    [Pg.642]    [Pg.887]    [Pg.372]    [Pg.276]    [Pg.371]    [Pg.333]    [Pg.338]    [Pg.342]    [Pg.1092]    [Pg.277]    [Pg.144]    [Pg.285]    [Pg.325]    [Pg.371]    [Pg.515]    [Pg.291]    [Pg.331]    [Pg.4]    [Pg.144]    [Pg.402]    [Pg.63]    [Pg.94]    [Pg.271]    [Pg.528]    [Pg.3240]    [Pg.152]    [Pg.219]    [Pg.312]    [Pg.115]    [Pg.208]    [Pg.279]   


SEARCH



Corrosion resistance

© 2024 chempedia.info