Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Core adsorbates

Coal particle intramural gas migration accords with nonsteady diffusion law in spherical coordinate frame. In the original condition, coal particle gas adsorption has been a balanced state, when external stress changing, gas will transform from adsorbed state to unbound state, and adsorbent gas will diffuse from coal particle core to surface following both mass conservation and continuity principle. In the coal particle core, adsorbent gas concentration abides by Langmuir law In the coal particle surface, the mass transfer between adsorbent gas and dissociate gas abide... [Pg.799]

It must always be borne in mind that when capillary condensation takes place during the course of isotherm determination, the pore walls are already covered with an adsorbed him, having a thickness t determined by the value of the relative pressure (cf. Chapter 2). Thus capillary condensation occurs not directly in the pore itself but rather in the inner core (Fig. 3.7). Consequently the Kelvin equation leads in the first instance to values of the core size rather than the pore size. The conversion of an r value to a pore size involves recourse to a model of pore shape, and also a knowledge of the angle of contact 0 between the capillary condensate and the adsorbed film on the walls. The involvement of 0 may be appreciated by consideration... [Pg.121]

Fig. 3.7 Cross-section, parallel to the axis of a cylindrical pore of radius r , showing the inner core of radius i and the adsorbed film of thickness t. Fig. 3.7 Cross-section, parallel to the axis of a cylindrical pore of radius r , showing the inner core of radius i and the adsorbed film of thickness t.
Fig. 3.16 A slit-shaped pore of width d, showing adsorbed film of thickness i and core of width d. ... Fig. 3.16 A slit-shaped pore of width d, showing adsorbed film of thickness i and core of width d. ...
Foster s neglect of the role of the adsorbed film was unavoidable in the then absence of any reliable information as to the thickness of the film. It is now known that in fact the effect of the film on the calculated result is far from negligible, as will be demonstrated shortly. Since, however, all the methods of calculating pore size distributions involve a decision as to the upper limit of the range to be studied, this question needs to be discussed first. In effect one has to choose a point corresponding to point G in Fig. 3.1, where the mesopores are deemed to be full up. If the isotherm takes the course GH there are no further cores to be considered in any case but if it swings upwards as at GH, the isotherm is usually so steep that the Kelvin-type approach becomes too inaccurate (cf. p. 114) to be useful. [Pg.133]

When the relative pressure falls to pj/p", the second group of pores loses its capillary condensate, but in addition the film on the walls of the first group of pores yields up some adsorbate, owing to the decrease in its thickness from t, to t. Similarly, when the relative pressure is further reduced to pj/p°, the decrement (nj-Wj) in the uptake will include contributions from the walls of both groups 1 and 2 (as the film thins down from tj to fj), in addition to the amount of capillary condensate lost from the cores of group 3. It is this composite nature of the amount given up at each step which complicates the calculation of the pore size distribution. [Pg.133]

The steps may be so chosen as to correspond to consecutive points on the experimental isotherm. In practice it is more convenient to divide the desorption process into a number of standard steps, either of relative pressure, or of pore radius, which is of course a function of relative pressure. The amount given up during each step i must be converted into a liquid volume i , (by use of the normal liquid density) in some procedures the conversion is deferred to a late stage in the calculation, but conceptually it is preferable to undertake the conversion at the outset. As indicated earlier, the task then becomes (i) to calculate the contribution dv due to thinning of the adsorbed film, and thus obtain the core volume associated with the mean core radius r by the subtraction = t ... [Pg.134]

If now 5K is the total amount of adsorbate (read off from the isotherm and expressed as a volume of liquid) which is released during the stage i, then the volume of cores emptied during the stage must be... [Pg.139]

At the point where capillary condensation commences in the finest mesopores, the walls of the whole mesopore system are already coated with an adsorbed film of area A, say. The quantity A comprises the area of the core walls and is less than the specific surface A (unless the pores happen to be parallel-sided slits). When capillary condensation takes place within a pore, the film-gas interface in that pore is destroyed, and when the pore system is completely filled with capillary condensate (e.g. at F in Fig. 3.1) the whole of the film-gas interface will have disappeared. It should therefore be possible to determine the area by suitable treatment of the adsorption data for the region of the isotherm where capillary condensation is occurring. [Pg.169]

Complex Coacervation. This process occurs ia aqueous media and is used primarily to encapsulate water-iminiscible Hquids or water-iasoluble soHds (7). In the complex coacervation of gelatin with gum arabic (Eig. 2), a water-iasoluble core material is dispersed to a desired drop size ia a warm gelatin solution. After gum arabic and water are added to this emulsion, pH of the aqueous phase is typically adjusted to pH 4.0—4.5. This causes a Hquid complex coacervate of gelatin, gum arabic, and water to form. When the coacervate adsorbs on the surface of the core material, a Hquid complex coacervate film surrounds the dispersed core material thereby forming embryo microcapsules. The system is cooled, often below 10°C, ia order to gel the Hquid coacervate sheU. Glutaraldehyde is added and allowed to chemically cross-link the capsule sheU. After treatment with glutaraldehyde, the capsules are either coated onto a substrate or dried to a free-flow powder. [Pg.318]

In the irreversible limit R < 0.1), the adsorption front within the particle approaches a shock transition separating an inner core into which the adsorbate has not yet penetrated from an outer layer in which the adsorbed phase concentration is uniform at the saturation value. The dynamics of this process is described approximately by the shrinldng-core model [Yagi and Kunii, Chem. Eng. (Japan), 19, 500 (1955)]. For an infinite fluid volume, the solution is ... [Pg.1520]

Figure 5-19. N(ls) XPS core level spectra of emeraldine base adsorbed on ITO. The top most spectrum corresponds to ultra-thin Him (in the mono layer regime) while the bottom spectrum corresponds to thick film. Figure 5-19. N(ls) XPS core level spectra of emeraldine base adsorbed on ITO. The top most spectrum corresponds to ultra-thin Him (in the mono layer regime) while the bottom spectrum corresponds to thick film.
Figure 5-21. N(ls) core level spectra of the iiniim model compound PC20X adsorbed on ITO. The upper curve corresponds to a thick film, the central curve to an intermediate thick film, and the lower curve to an ultra thin Him, essentially a mono-layer in thickness. The bold solid lines are the filled curves and the thin solid and dolled lines are the Gaussian peak components lor physisorbed and chemisorbed PC20X, respectively. Figure 5-21. N(ls) core level spectra of the iiniim model compound PC20X adsorbed on ITO. The upper curve corresponds to a thick film, the central curve to an intermediate thick film, and the lower curve to an ultra thin Him, essentially a mono-layer in thickness. The bold solid lines are the filled curves and the thin solid and dolled lines are the Gaussian peak components lor physisorbed and chemisorbed PC20X, respectively.
Most of the non-gaseous impurities in ice were once atmospheric aerosols. Atmospheric aerosols raining onto an ice sheet are of two types primary aerosols, which are incorporated directly into the atmosphere as aerosols (these include continental dust and sea spray), and secondary aerosols which form in the atmosphere from gases. In addition to aerosol-derived impurities, some soluble gases in the atmosphere (HNO3 HCl, H2O2, and NH3) adsorb directly onto ice, and so are measured in a core... [Pg.485]

By small-angle neutron scattering experiments on water/AOT/hydrocarbon microemulsions containing various additives, the change of the radius of the miceUar core with the addition of small quantities of additives has been investigated. The results are consistent with a model in which amphiphilic molecules such as benzyl alcohol and octanol are preferentially adsorbed into the water/surfactant interfacial region, decreasing the micellar radius, whereas toluene remains predominantly in the bulk hydrocarbon phase. The effect of n-alcohols on the stability of microemulsions has also been reported [119],... [Pg.485]

Hi ly dispersed supported bimetallic catalysts with bimetallic contributions have been prepared from molecular cluster precursors containing preformed bimetallic bond [1-2]. For examples, extremely high dispersion Pt-Ru/y-AUOa could be prepared successfully by adsorption of Pt2Ru4(CO)ison alumina [2]. By similar method, Pt-Ru cluster with carbonyl and hydride ligands, Pt3Ru6(CO)2i(p3-H)(p-H)3 (A) was used in this work to adsorb on MgO support. The ligands were expectedly removable from the metal framework at mild conditions without breaking the cluster metal core. [Pg.209]


See other pages where Core adsorbates is mentioned: [Pg.208]    [Pg.208]    [Pg.306]    [Pg.307]    [Pg.1792]    [Pg.2222]    [Pg.131]    [Pg.132]    [Pg.138]    [Pg.144]    [Pg.148]    [Pg.392]    [Pg.319]    [Pg.196]    [Pg.196]    [Pg.245]    [Pg.301]    [Pg.445]    [Pg.32]    [Pg.473]    [Pg.303]    [Pg.306]    [Pg.318]    [Pg.319]    [Pg.346]    [Pg.403]    [Pg.52]    [Pg.44]    [Pg.61]    [Pg.245]    [Pg.140]    [Pg.375]    [Pg.108]    [Pg.508]    [Pg.512]    [Pg.519]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



A-Ray Photoelectron Spectroscopy (XPS) - Adsorbate-core Emission

UPS from Adsorbate Core Levels

© 2024 chempedia.info