Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper enzymes oxidase

Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase). Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase).
Type II copper enzymes generally have more positive reduction potentials, weaker electronic absorption signals, and larger EPR hyperfine coupling constants. They adopt trigonal, square-planar, five-coordinate, or tetragonally distorted octahedral geometries. Usually, type II copper enzymes are involved in catalytic oxidations of substrate molecules and may be found in combination with both Type I and Type III copper centers. Laccase and ascorbate oxidase are typical examples. Information on these enzymes is found in Tables 5.1, 5.2, and 5.3. Superoxide dismutase, discussed in more detail below, contains a lone Type II copper center in each of two subunits of its quaternary structure. [Pg.189]

Table 5.2 contains data about selected copper enzymes from the references noted. It should be understood that enzymes from different sources—that is, azurin from Alcaligenes denitrificans versus Pseudomonas aeruginosa, fungal versus tree laccase, or arthropodan versus molluscan hemocyanin—will differ from each other to various degrees. Azurins have similar tertiary structures—in contrast to arthropodan and molluscan hemocyanins, whose tertiary and quaternary structures show large deviations. Most copper enzymes contain one type of copper center, but laccase, ascorbate oxidase, and ceruloplasmin contain Type I, Type II, and Type III centers. For a more complete and specific listing of copper enzyme properties, see, for instance, the review article by Solomon et al.4... [Pg.193]

Interest is mounting in this state, promoted once again by its possible implication in biological systems. Galactose oxidase, for example, is a copper enzyme which catalyses the oxidation of galactose to the corresponding aldehyde. The tervalent oxidation state may be prepared from Cu(II) by chemical, anodic and radical oxidation. Cu(III) complexes of peptides and macrocycles have been most studied, particularly from a mechanistic viewpoint. The oxidation of I" by Cu(III)-deprotonated peptide complexes and by imine-oxime complexes have a similar rate law... [Pg.418]

There are a number of excellent sources of information on copper proteins notable among them is the three-volume series Copper Proteins and Copper Enzymes (Lontie, 1984). A review of the state of structural knowledge in 1985 (Adman, 1985) included only the small blue copper proteins. A brief review of extended X-ray absorption fine structure (EXAFS) work on some of these proteins appeared in 1987 (Hasnain and Garner, 1987). A number of new structures have been solved by X-ray diffraction, and the structures of azurin and plastocyanin have been extended to higher resolution. The new structures include two additional type I proteins (pseudoazurin and cucumber basic blue protein), the type III copper protein hemocyanin, and the multi-copper blue oxidase ascorbate oxidase. Results are now available on a copper-containing nitrite reductase and galactose oxidase. [Pg.147]

The multi-copper oxidases include laccase, ceruloplasmin, and ascorbate oxidase. Laccase can be found in tree sap and in fungi ascorbate oxidase, in cucumber and related plants and ceruloplasmin, in vertebrate blood serum. Laccases catalyze oxidation of phenolic compounds to radicals with a concomitant 4e reduction of O2 to water, and it is thought that this process may be important in the breakdown of lignin. Ceruloplasmin, whose real biological function is either quite varied or unknown, also catalyzes oxidation of a variety of substrates, again via a 4e reduction of O2 to water. Ferroxidase activity has been demonstrated for it, as has SOD activity. Ascorbate oxidase catalyzes the oxidation of ascorbate, again via a 4e reduction of O2 to water. Excellent reviews of these three systems can be found in Volume 111 of Copper Proteins and Copper Enzymes (Lontie, 1984). [Pg.178]

Copper Metalloenzymes and Metalloprotein The copper enzymes are mostly oxidases, that is enzymes which catalyse oxidations. Examples are ... [Pg.100]

The selective oxidation of alcohols to the corresponding aldehydes and ketones is of prime importance for organic synthesis, and various types of reagents have been described that achieve this transformation selectively and efficiently [141,142]. However, the number of sub-stoichiometric, nontoxic, non-hazardous oxidation systems has been relatively Umited. As copper enzymes such as galactose oxidase are known to catalyze this oxidation reaction, bioinspired homogeneous catalysts based on copper species have also been developed in recent years. [Pg.40]

Kopf, M.-A. Karlin, K. D. Models of copper enzymes and heme-copper oxidases, Biomimetic Oxidations Catalyzed by Transition Metal Complexes , Ed. Meunier, B. Imperial College Press London, 2000, pp. 309—362. [Pg.54]

Mechanisms. Studies of model reactions473-476 and of electronic, Raman,456 477 478 ESR,479/480 and NMR spectra and kinetics481 have contributed to an understanding of these enzymes.459 461 464 482 483 For these copper amine oxidases the experimental evidence suggests an aminotransferase mechanism.450 453 474 4743 d Tire structure of the E.coli oxidase shows that a single copper ion is bound by three histidine imidazoles and is located adjacent to the TPQ (Eq. 15-53). Asp 383 is a conserved residue that may be the catalytic base in Eq. 15-53.474b A similar mechanism can be invoked for LTQ and TTQ. [Pg.817]

Tyrosinase is both an oxidase and a hydroxylase. Some other copper enzymes have only a hydroxylase function. One of the best understood of these is the peptidylglycine a-hydroxylating monoxygenase, which catalyzes the first step of the reaction of Eq. 10-11. The enzyme is a colorless two-copper protein but the copper atoms are 1.1 nm apart and do not form a binuclear center.570 Ascorbate is an essential cosubstrate, with two molecules being oxidized to the semidehydro-ascorbate radical as both coppers are reduced to Cu(I). A ternary complex of reduced enzyme, peptide, and 02 is formed and reacts to give the hydroxylated product.570 A related two-copper enzyme is dopamine (J-monooxygenase, which utilizes 02 and ascorbate to hydroxylate dopamine to noradrenaline (Chapter 25).571/572 These and other types of hydroxylases are compared in Chapter 18. [Pg.887]

Tire most studied of all copper-containing oxidases is cytochrome c oxidase of mitochondria. This multisubunit membrane-embedded enzyme accepts four electrons from cytochrome c and uses them to reduce 02 to 2 H20. It is also a proton pump. Its structure and functions are considered in Chapter 18. However, it is appropriate to mention here that the essential catalytic centers consist of two molecules of heme a (a and a3) and three Cu+ ions. In the fully oxidized enzyme two metal centers, one Cu2+ (of the two-copper center CuA) and one Fe3+ (heme a), can be detected by EPR spectroscopy. The other Cu2+ (CuB) and heme a3 exist as an EPR-silent exchange-coupled pair just as do the two copper ions of hemocyanin and of other type 3 binuclear copper centers. [Pg.887]

Two ascorbate radicals can react with each other in a disproportionation reaction to give ascorbate plus dehydroascorbate. However, most cells can reduce the radicals more directly. In many plants this is accomplished by NADH + H+ using a flavoprotein monodehydroascorbate reductase.0 Animal cells may also utilize NADH or may reduce dehydroascorbate with reduced glutathione.CC/ff Plant cells also contain a very active blue copper ascorbate oxidase (Chapter 16, Section D,5), which catalyzes the opposite reaction, formation of dehydroascorbate. A heme ascorbate oxidase has been purified from a fungus. 11 1 Action of these enzymes initiates an oxidative degradation of ascorbate, perhaps through the pathway of Fig. 20-2. [Pg.1067]

Table 74 Multiple-type Copper Enzymes in Blue Oxidases... Table 74 Multiple-type Copper Enzymes in Blue Oxidases...
Copper has an essential role in a number of enzymes, notably those involved in the catalysis of electron transfer and in the transport of dioxygen and the catalysis of its reactions. The latter topic is discussed in Section 62.1.12. Hemocyanin, the copper-containing dioxygen carrier, is considered in Section 62.1.12.3.8, while the important role of copper in oxidases is exemplified in cytochrome oxidase, the terminal member of the mitochondrial electron-transfer chain (62.1.12.4), the multicopper blue oxidases such as laccase, ascorbate oxidase and ceruloplasmin (62.1.12.6) and the non-blue oxidases (62.12.7). Copper is also involved in the Cu/Zn-superoxide dismutases (62.1.12.8.1) and a number of hydroxylases, such as tyrosinase (62.1.12.11.2) and dopamine-jS-hydroxylase (62.1.12.11.3). Tyrosinase and hemocyanin have similar binuclear copper centres. [Pg.648]

In the discussion of the biochemistry of copper in Section 62.1.8 it was noted that three types of copper exist in copper enzymes. These are type 1 ( blue copper centres) type 2 ( normal copper centres) and type 3 (which occur as coupled pairs). All three classes are present in the blue copper oxidases laccase, ascorbate oxidase and ceruloplasmin. Laccase contains four copper ions per molecule, and the other two contain eight copper ions per molecule. In all cases oxidation of substrate is linked to the four-electron reduction of dioxygen to water. Unlike cytochrome oxidase, these are water-soluble enzymes, and so are convenient systems for studying the problems of multielectron redox reactions. The type 3 pair of copper centres constitutes the 02-reducing sites in these enzymes, and provides a two-electron pathway to peroxide, bypassing the formation of superoxide. Laccase also contains one type 1 and one type 2 centre. While ascorbate oxidase contains eight copper ions per molecule, so far ESR and analysis data have led to the identification of type 1 (two), type 2 (two) and type 3 (four) copper centres. [Pg.699]

Catechol melanin, a black pigment of plants, is a polymeric product formed by the oxidative polymerization of catechol. The formation route of catechol melanin (Eq. 5) is described as follows [33-37] At first, 3-(3, 4 -dihydroxyphe-nyl)-L-alanine (DOPA) is derived from tyrosine. It is oxidized to dopaquinone and forms dopachrome. 5,6-Dihydroxyindole is formed, accompanied by the elimination of C02. The oxidative coupling polymerization produces a melanin polymer whose primary structure contains 4,7-conjugated indole units, which exist as a three-dimensional irregular polymer similar to lignin. Multistep oxidation reactions and coupling reactions in the formation of catechol melanin are catalyzed by a copper enzyme such as tyrosinase. Tyrosinase is an oxidase con-... [Pg.538]

The phenomenon of bioelectrical catalysis with direct electron transfer from electrode to enzyme active site was primarily observed in the study of electrochemical oxygen reduction in the presence of a copper-containing oxidase - laccase, adsorbed on electrodes of different origins. This work was developed with peroxidase and hydrogenase application as the working components [2],... [Pg.291]

It has been shown [9] that the copper-dependent oxidase enzyme, laccase, in combination with TEMPO or derivatives thereof, is able to catalyze the aerobic oxidation of the primary alcohol moieties in starch (Fig. 10.2). There is currently considerable commercial interest in laccases for application in pulp bleaching (as a replacement for chlorine) in paper manufacture and remediation of phenol-containing waste streams [10]. [Pg.411]

Ceruloplasmin is an enzyme synthesised in the liver which contains six atoms of copper in its structure. Ceruloplasmin carries 90% of plasma copper the other 10% is carried by albumin. Ceruloplasmin exhibits a copper-dependent oxidase activity, which is associated with possible oxidation of Fe + (ferrous iron) into Fe (ferric iron), therefore assisting in its transport in the plasma in association with transferrin, which can only carry iron in the ferric state. [Pg.83]

Type II copper(II) sites are present in mononuclear copper enzymes such as dioxygenases, monoxygenases, nitrite reductases, and nonblue oxidases. The high molecular weight of most of these enzymes and the unfavorable electron relaxation time of copper ion in the oxidized form have up to now precluded the application of NMR spectroscopy. [Pg.425]


See other pages where Copper enzymes oxidase is mentioned: [Pg.471]    [Pg.471]    [Pg.142]    [Pg.264]    [Pg.349]    [Pg.350]    [Pg.353]    [Pg.417]    [Pg.117]    [Pg.189]    [Pg.217]    [Pg.217]    [Pg.247]    [Pg.17]    [Pg.614]    [Pg.26]    [Pg.151]    [Pg.265]    [Pg.469]    [Pg.210]    [Pg.7]    [Pg.51]    [Pg.233]    [Pg.391]    [Pg.101]    [Pg.268]    [Pg.268]   


SEARCH



Copper enzymes

Copper enzymes amine oxidases

Copper enzymes galactose oxidases

Enzyme multiple copper oxidases

Enzyme oxidase

Enzymes copper-containing oxidases

Oxidases copper

© 2024 chempedia.info