Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper cupric chloride

Cupric chloride or copper(II) chloride [7447-39 ], CUCI2, is usually prepared by dehydration of the dihydrate at 120°C. The anhydrous product is a dehquescent, monoclinic yellow crystal that forms the blue-green orthohombic, bipyramidal dihydrate in moist air. Both products are available commercially. The dihydrate can be prepared by reaction of copper carbonate, hydroxide, or oxide and hydrochloric acid followed by crystallization. The commercial preparation uses a tower packed with copper. An aqueous solution of copper(II) chloride is circulated through the tower and chlorine gas is sparged into the bottom of the tower to effect oxidation of the copper metal. Hydrochloric acid or hydrogen chloride is used to prevent hydrolysis of the copper(II) (11,12). Copper(II) chloride is very soluble in water and soluble in methanol, ethanol, and acetone. [Pg.253]

Copper etchants do not directly influence the electroless plating process, but are used merely to remove unwanted copper, and should not affect the deposit properties. The costs of waste treatment and disposal have led to disuse of throw-away systems such as chromic—sulfuric acid, ferric chloride, and ammonium persulfate. Newer types of regenerable etchants include cupric chloride, stabilized peroxide, and proprietary ammoniacal etchant baths. [Pg.112]

The CASS Test. In the copper-accelerated acetic acid salt spray (CASS) test (42), the positioning of the test surface is restricted to 15 2°, and the salt fog corrosivity is increased by increasing temperature and acidity, pH about 3.2, along with the addition of cupric chloride dihydrate. The CASS test is used extensively by the U.S. automobile industry for decorative nickel—chromium deposits, but is not common for other deposits or industries. Exposure cycle requirements are usually 22 hours, rarely more than 44 hours. Another corrosion test, now decreasing in use, for decorative nickel—chromium finishes is the Corrodkote test (43). This test utilizes a specific corrosive paste combined with a warm humidity cabinet test. Test cycles are usually 20 hours. [Pg.151]

A one-stage process for producing vinyl acetate directly from ethylene has also been disclosed. In this process ethylene is passed through a substantially anhydrous suspension or solution of acetic acid containing cupric chloride and copper or sodium acetate together with a palladium catalyst to yield vinyl acetate. [Pg.388]

Cupri-. cupric, copper(II). -azetst, n. cupric acetate, copper(II) acetate, -carbonat, n. cupric carbonate, copper(II) carbonate, -chlorid, n. cupric chloride, copper(II) chloride. -hydroxyd, n. cupric hydroxide, cop-per(II) hydroxide. -ion, n. cupric ion, copper(II) ion. -ozalat, n. cupric oxalate, copper(II) oxalate, -oxyd, n. cupric oxide, copper(II) oxide. -salz, n. cupric salt, copper(II) salt, -suifat, n. cupric sulfate. copper(II) sulfate, -sulfid, n. cupric sulfide, copper(II) sulfide, -verbihdung, /. cupric compound, copper(II) compound, -wein-saure, /. cupritartaric acid. [Pg.94]

Kupfer-bromid, n. copper bromide, specif, cupric bromide, copper(II) bromide, -bro-mtir, n. cuprous bromide, copper(I) bromide, -chlorid, n. copper chloride, specif, cupric chloride, copper(II) chloride, -chloriir, n. cuprous chloride, copper(I) chloride, -cyamd, Ti. copper cyanide, specif, cupric cyanide, copper(II) cyanide, -cyaniir, n. cuprous cyanide, copper(I) cyanide, -dom, m. slag from liquated copper, -draht, m. copper wire, -drahtnetz, n. copper gauze, -drehspane,... [Pg.265]

K has the value of about 1 x 10 at 298 K, and in solutions of copper ions in equilibrium with metallic copper, cupric ions therefore greatly predominate (except in very dilute solutions) over cuprous ions. Cupric ions are therefore normally stable and become unstable only when the cuprous ion concentration is very low. A very low concentration of cuprous ions may be produced, in the presence of a suitable anion, by the formation of either an insoluble cuprous salt or a very stable complex cuprous ion. Cuprous salts can therefore exist in contact with water only if they are very sparingly soluble (e.g. cuprous chloride) or are combined in a complex, e.g. [Cu(CN)2) , Cu(NH3)2l. Cuprous sulphate can be prepared in non-aqueous conditions, but because it is not sparingly soluble in water it is immediately decomposed by water to copper and cupric sulphate. [Pg.686]

Instead of copper one can use zinc, iron, stannous chloride, or cuprous chloride, the last-named two being oxidized to stannic and cupric chloride respectively. The reactions are carried out at low temperature ( — 10 to — 20°C) in acetone or ethyl acetate (Nesmeyanov et al., 1934 a). [Pg.274]

Diazonium salts can be converted to sulfonyl chlorides by treatment with sulfur dioxide in the presence of cupric chloride. The use of FeS04 and copper metal instead of CUCI2 gives sulfinic acids (ArS02H). See also 13-18. [Pg.937]

Aluminium sulphate Ammonium bifluoride Ammonium bisulphite Ammonium bromide Ammonium persulphate Antimony trichloride Beryllium chloride Cadmium chloride Calcium hypochlorite Copper nitrate Copper sulphate Cupric chloride Cuprous chloride Ferric chloride Ferric nitrate... [Pg.26]

Copper sweetening. In this process, cupric chloride is used. The reaction is shown as ... [Pg.103]

The standard free energy change for this reaction is generally positive at all temperatures because oxides are invariably stabler than chlorides. An exception to this rule occurs in the case of copper because cupric chloride is more stable than cupric oxide. At 500 °C, the standard free energy change (AG°) for the reaction... [Pg.401]

The allylation of aldehydes can be carried out using stannous chloride and catalytic cupric chloride or copper in aqueous media." In-situ probing provides indirect (NMR, CV) and direct (MS) evidence for the copper(I)-catalyzed formation of an allyltrihalostannane intermediate in very high concentration in water (Scheme 8.6). Hydrophilic palladium complex also efficiently catalyzes the allylation of carbonyl compounds with allyl chlorides or allyl alcohols with SnCl2 under aqueous-organic... [Pg.233]

In the manufacture of printed circuit boards, the unwanted copper is etched away by acid solutions of cupric chloride (Equation 1.1). As the copper dissolves, the effectiveness of the solution tails and it must be regenerated. The traditional way of doing this is to oxidize the cuprous ion produced with acidified hydrogen peroxide. During the process the volume of solution increases steadily and the copper in the surplus liquor is precipitated as copper oxide and usually landfilled. [Pg.30]

In this study, we extend the range of inorganic materials produced from polymeric precursors to include copper composites. Soluble complexes between poly(2-vinylpyridine) (P2VPy) and cupric chloride were prepared in a mixed solvent of 95% methanol 5% water. Pyrolysis of the isolated complexes results in the formation of carbonaceous composites of copper. The decomposition mechanism of the complexes was studied by optical, infrared, x-ray photoelectron and pyrolysis mass spectroscopy as well as thermogravimetric analysis and magnetic susceptibility measurements. [Pg.430]

Most corrosion processes in copper and copper alloys generally start at the surface layer of the metal or alloy. When exposed to the atmosphere at ambient temperature, the surface reacts with oxygen, water, carbon dioxide, and air pollutants in buried objects the surface layer reacts with the components of the soil and with soil pollutants. In either case it gradually acquires a more or less thick patina under which the metallic core of an object may remain substantially unchanged. At particular sites, however, the corrosion processes may penetrate beyond the surface, and buried objects in particular may become severely corroded. At times, only extremely small remains of the original metal or alloy may be left underneath the corrosion layers. Very small amounts of active ions in the soil, such as chloride and nitrate under moist conditions, for example, may result, first in the corrosion of the surface layer and eventually, of the entire object. The process usually starts when surface atoms of the metal react with, say, chloride ions in the groundwater and form compounds of copper and chlorine, mainly cuprous chloride, cupric chloride, and/or hydrated cupric chloride. [Pg.219]

Some of the cupric chloride, in turn, reacts with additional copper in the alloy to form more cuprous chloride ... [Pg.221]

A bottle of cuprous chloride solution prepared by standing cupric chloride in strong hydrochloric acid over excess copper burst on standing. In the presence of some complexing agents, copper can react with aqueous media to form hydrogen. Slow pressurisation by this means explains the above explosion (Editor s comments). The metal is also known to dissolve in cyanides and some amine solutions. [Pg.1495]

CLEAR [Copper Leach Electrolysis And Regeneration] A process for leaching copper from sulfide ores by boiling with aqueous cupric chloride ... [Pg.66]

Cymet (2) [Cyprus Metallurgical] A process for extracting copper from sulfide ores. Copper is leached from the ore using aqueous ferric and cupric chloride solution ... [Pg.78]

Materials Required Proguanil hydrochloride 0.6 g ammoniacal cupric chloride solution (dissolve 22.5 g of copper (II) chloride in 200 ml of DW and mix with 100 ml of 13.5 M ammonia) NO. 4 sintered-glass crucible mixture of dilute solution of ammonia and DW (1 5). [Pg.187]

The catalyst is the key to this reaction and in this case is an aqueous solution of palladium chloride (PdCl2) and cupric chloride (CuCh). There is a complex, but well understood, mad scramble of ions and molecules that takes place as chlorine temporarily separates from the palladium and the copper and facilitates ethylene s reacting with oxygen. [Pg.234]

Chlorpyrifos is stable to hydrolysis in the pH range of 5-6 (Mortland and Raman, 1967). However, in the presence of a Cu(lf) salt (i.e., cupric chloride) or when present as the exchangeable Cu(II) cation in montmorillonite clays, chlorpyrifos is completely hydrolyzed via first-order kinetics in <24 h at 20 °C. It was suggested that chlorpyrifos decomposition in the presence of Cu(II) was a result of coordination of molecules to the copper atom with subsequent cleavage of the side chain containing the phosphorus atom forming 3,5,6-trichloro-2-pyridinol and 0,0-ethyl-0-phosphorothioate (Mortland and Raman, 1967). [Pg.315]


See other pages where Copper cupric chloride is mentioned: [Pg.26]    [Pg.26]    [Pg.484]    [Pg.510]    [Pg.26]    [Pg.26]    [Pg.484]    [Pg.510]    [Pg.189]    [Pg.51]    [Pg.514]    [Pg.551]    [Pg.553]    [Pg.1023]    [Pg.10]    [Pg.139]    [Pg.241]    [Pg.466]    [Pg.1207]    [Pg.432]    [Pg.54]    [Pg.17]    [Pg.199]    [Pg.200]    [Pg.187]    [Pg.90]    [Pg.95]    [Pg.1001]    [Pg.1570]    [Pg.113]    [Pg.374]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



Copper chloride

Cupric

Cupric chlorid

Cupric chloride

© 2024 chempedia.info