Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper catalyst surface areas

There is little data available to quantify these factors. The loss of catalyst surface area with high temperatures is well-known (136). One hundred hours of dry heat at 900°C are usually sufficient to reduce alumina surface area from 120 to 40 m2/g. Platinum crystallites can grow from 30 A to 600 A in diameter, and metal surface area declines from 20 m2/g to 1 m2/g. Crystal growth and microstructure changes are thermodynamically favored (137). Alumina can react with copper oxide and nickel oxide to form aluminates, with great loss of surface area and catalytic activity. The loss of metals by carbonyl formation and the loss of ruthenium by oxide formation have been mentioned before. [Pg.111]

The oxidative dehydrogenation of ethanolamine to sodium glycinate in 6.2 M NaOH was investigated using unpromoted and chromia promoted skeletal copper catalysts at 433 K and 0.9 MPa. The reaction was first order in ethanolamine concentration and was independent of caustic concentration, stirrer speed and particle size. Unpromoted skeletal copper lost surface area and activity with repeated cycles but a small amount of chromia (ca. 0.4 wt%) resulted in enhanced activity and stability. [Pg.27]

Figure 4 Effect of repeated reaction cycles and catalyst pretreatment in 6.2 M NaOH at 473 K on rate constant and catalyst surface area for ethanolamine dehydrogenation over unpromoted skeletal copper under standard conditions. Figure 4 Effect of repeated reaction cycles and catalyst pretreatment in 6.2 M NaOH at 473 K on rate constant and catalyst surface area for ethanolamine dehydrogenation over unpromoted skeletal copper under standard conditions.
Copper metal surface area was determined by nitrous oxide decomposition. A sample of catalyst (0.2 g) was reduced by heating to 563 K under a flow of 10 % H2/N2 (50 cm min"1) at a heating rate of 3 deg.min 1. The catalyst was then held at this temperature for 1 h before the gas flow was switched to helium. After 0.5 h the catalyst was cooled in to 333 K and a flow of 5 %N20/He (50 cm3mirr ) passed over the sample for 0.25 h to surface oxidise the copper. At the end of this period the flow was switched to 10 % H2/N2 (50 entitlin 1) and the sample heated at a heating rate of 3 deg.min"1. The hydrogen up-take was quantified, from this a... [Pg.85]

To summarize the qualitative findings, the methanol synthesis activity in the binary Cu/ZnO catalysts appears to be linked to sites that also irreversibly chemisorb CO and not to sites that adsorb CO reversibly. Since irreversible adsorption of CO follows linearly the concentration of amorphous copper in zinc oxide, these sites are likely to be that part of the copper solute that is present on the zinc oxide surface. No correlation of the catalyst activity and the copper metal surface area, titrated by reversible form of CO or by oxygen, could be found in the binary Cu/ZnO catalysts (43). In contrast with this result, it has been claimed that the synthesis activity is proportional to copper metal area in copper-chromia (47), copper-zinc aluminate (27), and copper-zinc oxide-alumina (46) catalysts. In these latter communications (27,46,47), the amount of amorphous copper has not been determined, and obviously there is much room for further research to confirm one or another set of results and interpretations. However, in view of the lack of activity of pure copper metal quoted earlier, it is unlikely that the synthesis activity is simply proportional to the copper metal surface area in any of the low-temperature methanol-synthesis catalysts. [Pg.274]

In contrast to silver-catalysed cumene oxidation, the evidence concerning the mechanism of copper-catalysed reactions favours radical initiation via surface hydroperoxide decomposition. Gorokhovatsky has shown that the rate of ethyl benzene oxidation responds to changes in the amount of copper(ii) oxide catalyst used, in a manner which is characteristic of this mechanism. Allara and Roberts have studied the oxidation of hexadecane over copper catalysts treated in various ways to produce different surface oxide species, Depending on the catalyst surface area and surface oxide species present, a certain critical hydroperoxide concentration was necessary in order to produce a catalytic reaction. At lower hydroperoxide levels, the reaction was inhibited by the oxidized copper surface. XPS surface analysis of the copper catalysts showed a... [Pg.95]

These latter products act like catalyst modifiers in particular of copper (5) and hence we were led to examine the modifications of the copper metallic surface area (N2O decomposition) following the addition of known amounts of water or of ammonia at 623 K. These experiments were performed "in situ" in the unit cell used for the metallic surface area measurement. [Pg.310]

It has been concluded from experimental work with catalysts containing alumina that methanol forms from carbon dioxide and that the catalyst activity is proportional to the copper metal surface area. The presence of carbon dioxide in the gas increases the synthesis rate. The zinc oxide and alumina play little part in the actual reaction apart from stabihzing the reduced copper and protecting it from the effect of any poisons. On the other hand, with catalysts containing chromia, the carbon dioxide leads to a decrease in the reaction rate. ... [Pg.431]

The zinc oxide component of the catalyst serves to maintain the activity and surface area of the copper sites, and additionally helps to reduce light ends by-product formation. Selectivity is better than 99%, with typical impurities being ethers, esters, aldehydes, ketones, higher alcohols, and waxes. The alumina portion of the catalyst primarily serves as a support. [Pg.275]

When catalysts are used in a highly exothermic reaction, an active phase may be diluted with an inert material to help dissipate heat and moderate the reaction. This technique is practiced in the commercial oxychlorination of ethylene to dichloroethane, where an alumina-supported copper haUde catalyst is mixed with a low surface area inert diluent. [Pg.195]

The predominate role of the 2inc and aluminum oxides in the ICI catalyst is to reduce the rate of sintering and loss of metallic copper surface area, which, in addition to poisoning, is one of the modes of activity loss with time for this catalyst. [Pg.199]

The advanced all-metallic catalysts are believed to be formed by bonding active copper-nickel alloys onto stainless steel wires. Under the scanning electron microscope, it appears that the surface area may be more than twenty times the geometric surface area (42) ... [Pg.81]

Table 7. As can be seen, both Dowex and Deloxan led to poor enantioselec-tivities, which further decreased after catalyst recovery. Better results, which are comparable with those obtained in homogeneous phase, were obtained with Nation (Table 7) [53], although it was necessary to carry out the reaction at 60 °C due to the low copper content in the soHd. This low copper level is a consequence of the low surface area of this polymer (< 0.02 m g ) and, for this reason, a nafion-silica nanocomposite was used as the support [53]. With this catalyst, the reaction took place at room temperature and with similar enantioselectivity (Table 7). Table 7. As can be seen, both Dowex and Deloxan led to poor enantioselec-tivities, which further decreased after catalyst recovery. Better results, which are comparable with those obtained in homogeneous phase, were obtained with Nation (Table 7) [53], although it was necessary to carry out the reaction at 60 °C due to the low copper content in the soHd. This low copper level is a consequence of the low surface area of this polymer (< 0.02 m g ) and, for this reason, a nafion-silica nanocomposite was used as the support [53]. With this catalyst, the reaction took place at room temperature and with similar enantioselectivity (Table 7).
Carbon monoxide chemisorption was used to estimate the surface area of metallic iron after reduction. The quantity of CO chemisorbed was determined [6J by taking the difference between the volumes adsorbed in two isotherms at 195 K where there had been an intervening evacuation for at least 30 min to remove the physical adsorption. Whilst aware of its arbitrariness, we have followed earlier workers [6,10,11] in assuming a stoichiometry of Fe CO = 2.1 to estimate and compare the surface areas of metallic iron in our catalysts. As a second index for this comparison we used reactive N2O adsorption, N20(g) N2(g) + O(ads), the method widely applied for supported copper [12]. However, in view of the greater reactivity of iron, measurements were made at ambient temperature and p = 20 Torr, using a static system. [Pg.259]

Recently, a novel process for the preparation of chromia promoted skeletal copper catalysts was reported by Ma and Wainwright (8), in which Al was selectively leached from CuA12 alloy particles using 6.1 M NaOH solutions containing different concentrations of sodium chromate. The catalysts had very high surface areas and were very stable in highly concentrated NaOH solutions at temperatures up to 400 K (8, 9). They thus have potential for use in the liquid phase dehydrogenation of aminoalcohols to aminocarboxylic acid salts. [Pg.27]

In order to investigate the relationship between the surface area of skeletal copper and activity, the same sample of catalyst was tested in four successive runs. Rate constants was compared with that of another sample prepared in the same way but pretreated in 6.2 M NaOH at 473 K before use. Figure 4 shows that the first order rate constants, calculated so as to take into account the mass of catalyst relative to the volume of solution, decreased in the first three cycles but then stabilised. The surface areas, measured on small samples taken after reaction, mirrored this pattern. The rate constant, and the surface area, for the pretreated catalyst was similar to those obtained in cycles 3 and 4. It is apparent that activity and surface area are closely related for the unpromoted skeletal copper catalyst and that the pretreatment in NaOH at 473 K is approximately equivalent to three repeated reactions in terms of stabilising activity and surface area. [Pg.30]

Table 1 Compositions and surface areas of unpromoted and chromia-promoted skeletal copper catalysts ... Table 1 Compositions and surface areas of unpromoted and chromia-promoted skeletal copper catalysts ...
The catalyst used throughout this study was prepared by impregnation. To a slurry of silica (M5 Cab-O-Sil, Surface Area 200 m2g 1) in water sufficient copper nitrate solution was added to give a loading of 8.6 % w/w Cu. The resulting suspension was dried at 353 K until a free flowing powder was obtained. [Pg.85]


See other pages where Copper catalyst surface areas is mentioned: [Pg.196]    [Pg.292]    [Pg.259]    [Pg.295]    [Pg.174]    [Pg.262]    [Pg.15]    [Pg.49]    [Pg.357]    [Pg.844]    [Pg.277]    [Pg.134]    [Pg.199]    [Pg.743]    [Pg.3]    [Pg.310]    [Pg.80]    [Pg.274]    [Pg.49]    [Pg.430]    [Pg.32]    [Pg.33]    [Pg.295]    [Pg.3]    [Pg.121]    [Pg.112]    [Pg.113]    [Pg.200]    [Pg.206]    [Pg.207]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Catalyst surface area

Copper catalyst

Copper surface

Surface catalysts

© 2024 chempedia.info