Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper abundance

Copper. The abundance of copper in the depleted mantle raises a particular problem. Unlike other moderately compatible elements, there is a difference in the copper abundances of massive peridotites compared to many, but not all, of the xenolith suites from alkali basalts. The copper versus MgO correlations in massive peridotites consistently extrapolate to values of 30 ppm at 36% MgO, whereas those for the xenoliths usually extrapolate to <20 ppm, albeit with much scatter. A value of 30 ppm is a relatively high value when chondrite normalized ((Cu/Mg)N = 0.11), and would imply Cu/Ni and Cu/Co ratios greater than chondritic, difficult to explain, if true. However, the copper abundances in massive peridotites are correlated with sulfur, and may have been affected by the sulfur mobility postulated by Lorand (1991). Copper in xenoliths is not correlated with sulfur, and its abundance in the xenoliths and also inferred from correlations in basalts and komatiites points to a substantially lower abundance of 20 ppm (O Neill, 1991). We have adopted this latter value. [Pg.723]

The abundance of indium in the earth s cmst is probably about 0.1 ppm, similat to that of silver. It is found in trace amounts in many minerals, particulady in the sulfide ores of zinc and to a lesser extent in association with sulfides of copper, tin, and lead. Indium follows zinc through flotation concentration, and commercial recovery of the metal is achieved by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting and associated lead (qv) and copper (qv) smelting (see Metallurgy, EXTRACTIVE Zinc and zinc alloys). [Pg.79]

Iron [7439-89-6J, Fe, from the Latin ferrum, atomic number 26, is the fourth most abundant element in the earth s cmst, outranked only by aluminum, sihcon, and oxygen. It is the world s least expensive and most useful metal. Although gold, silver, copper, brass, and bron2e were in common use before iron, it was not until humans discovered how to extract iron from its ores that civilization developed rapidly (see Mineral processing and recovery). [Pg.411]

Titanium is the ninth most abundant element ia the earth s cmst, at approximately 0.62%, and the fourth most abundant stmctural element. Its elemental abundance is about five times less than iron and 100 times greater than copper, yet for stmctural appHcations titanium s aimual use is ca 200 times less than copper and 2000 times less than iron. Metal production began in 1948 its principal use was in military aircraft. Gradually the appHcations spread to commercial aircraft, the chemical industry, and, more recently, consumer goods. [Pg.94]

Arsenic is widely distributed about the earth and has a terrestrial abundance of approximately 5 g/t (4). Over 150 arsenic-bearing minerals are known (1). Table 2 fists the most common minerals. The most important commercial source of arsenic, however, is as a by-product from the treatment of copper, lead, cobalt, and gold ores. The quantity of arsenic usually associated with lead and copper ores may range from a trace to 2 —3%, whereas the gold ores found in Sweden contain 7—11% arsenic. Small quantities of elemental arsenic have been found in a number of localities. [Pg.327]

Cobalt is the thirtieth most abundant element on earth and comprises approximately 0.0025% of the earth s cmst (3). It occurs in mineral form as arsenides, sulfides, and oxides trace amounts are also found in other minerals of nickel and iron as substitute ions (4). Cobalt minerals are commonly associated with ores of nickel, iron, silver, bismuth, copper, manganese, antimony, and 2iac. Table 1 Hsts the principal cobalt minerals and some corresponding properties. A complete listing of cobalt minerals is given ia Reference 4. [Pg.369]

Copper is required for all forms of aerobic and most forms of anaerobic life. In humans, the biological function of copper is related to the enzymatic action of specific essential copper proteins (66). Lack of these copper enzymes is considered a primary factor in cerebral degeneration, depigmentation, and arterial changes. Because of the abundance of copper in most human diets, chemically significant copper deficiency is extremely rare (67). [Pg.212]

Properties of T2O. Some important physical properties of T2O are Hsted in Table 2. Tritium oxide [14940-65-9] can be prepared by catalytic oxidation of T2 or by reduction of copper oxide using tritium gas. T2O, even of low (2—19% T) isotopic abundance, undergoes radiation decomposition to form HT and O2. Decomposition continues, even at 77 K, when the water is fro2en. Pure tritiated water irradiates itself at the rate of 10 MGy/d (10 rad/d). A stationary concentration of tritium peroxide, T2O2, is always present (9). AH of these factors must be taken into account in evaluating the physical constants of a particular sample of T2O. [Pg.12]

However, when the vulcanization temperature was increased to 190°C, it was observed that the peaks in the copper and sulfur profiles no longer coincided. Instead, the peak in the sulfur profile coincided with the peaks in the zinc and oxygen profiles. These results indicated that at higher vulcanizing temperatures, zinc sulfide formed in abundance while formation of copper sulfide decreased. [Pg.295]

Ruthenium and osmium are generally found in the metallic state along with the other platinum metals and the coinage metals. The major source of the platinum metals are the nickel-copper sulfide ores found in South Africa and Sudbury (Canada), and in the river sands of the Urals in Russia. They are rare elements, ruthenium particularly so, their estimated abundances in the earth s crustal rocks being but O.OOOl (Ru) and 0.005 (Os) ppm. However, as in Group 7, there is a marked contrast between the abundances of the two heavier elements and that of the first. [Pg.1071]

Although estimates of their abundances vary considerably, Pd and Pt (approximately 0.015 and 0.01 ppm respectively) are much rarer than Ni. They are generally associated with the other platinum metals and occur either native in placer (i.e. alluvial) deposits or as sulfides or arsenides in Ni, Cu and Fe sulfide ores. Until the 1820s all platinum metals came from South America, but in 1819 the first of a series of rich placer deposits which were to make Russia the chief source of the metals for the next century, was discovered in the Urals. More recently however, the copper-nickel ores in South Africa and Russia (where the Noril sk-Talnakh deposits are well inside the Arctic Circle) have become the major sources, supplemented by supplies from Sudbury. [Pg.1145]

Zinc (76ppm of the earth s crust) is about as abundant as rubidium (78 ppm) and slightly more abundant than copper (68 ppm). Cadmium (0.16 ppm) is similar to antimony (0.2 ppm) it is twice as abundant as mercury (0.08 ppm), which is itself as abundant as silver (0.08 ppm) and close to selenium (0.05 ppm). These elements are chalcophiles (p. 648) and so, in the reducing atmosphere prevailing when the earth s crust solidified, they separated out in the sulfide phase, and their most important ores are therefore sulfides. Subsequently, as rocks were weathered, zinc was leached out to be precipitated as carbonate, silicate or phosphate. [Pg.1202]

Copper has two naturally occurring isotopes. Cu-63 has an atomic mass of62.9296 amu and an abundance of 69.17%. What is die atonic mass of the second isotope What is its nuclear symbol ... [Pg.68]

Derived from the German word meaning devil s copper, nickel is found predominantly in two isotopic forms, Ni (68% natural abundance) and Ni (26%). Ni exists in four oxidation states, 0, I, II, III, and IV. Ni(II), which is the most common oxidation state, has an ionic radius of —65 pm in the four-coordinate state and —80 pm in the octahedral low-spin state. The Ni(II) aqua cation exhibits a pAa of 9.9. It forms tight complexes with histidine (log Af = 15.9) and, among the first-row transition metals, is second only to Cu(II) in its ability to complex with acidic amino acids (log K( = 6-7 (7). Although Ni(II) is most common, the paramagnetic Ni(I) and Ni(III) states are also attainable. Ni(I), a (P metal, can exist only in the S = state, whereas Ni(lll), a cT ion, can be either S = or S =. ... [Pg.284]

C20-0088. Titanium is nearly 100 times more abundant in the Earth s crust than copper yet copper was exploited as a metal in antiquity, and titanium has found applications only in recent times. Explain. [Pg.1494]

Making and Using Tables Data Table 3 shows the isotopic mass and relative abundance for the most common isotopes of copper and zinc. [Pg.199]


See other pages where Copper abundance is mentioned: [Pg.408]    [Pg.145]    [Pg.158]    [Pg.31]    [Pg.501]    [Pg.549]    [Pg.462]    [Pg.327]    [Pg.42]    [Pg.88]    [Pg.381]    [Pg.401]    [Pg.194]    [Pg.384]    [Pg.371]    [Pg.192]    [Pg.477]    [Pg.1174]    [Pg.169]    [Pg.378]    [Pg.915]    [Pg.398]    [Pg.175]    [Pg.325]    [Pg.1]    [Pg.378]    [Pg.161]    [Pg.1431]    [Pg.1475]    [Pg.1484]    [Pg.3]    [Pg.42]    [Pg.156]    [Pg.112]   
See also in sourсe #XX -- [ Pg.1174 ]

See also in sourсe #XX -- [ Pg.132 , Pg.330 ]

See also in sourсe #XX -- [ Pg.151 ]

See also in sourсe #XX -- [ Pg.1174 ]

See also in sourсe #XX -- [ Pg.594 ]

See also in sourсe #XX -- [ Pg.7 , Pg.176 ]

See also in sourсe #XX -- [ Pg.687 ]

See also in sourсe #XX -- [ Pg.717 ]




SEARCH



© 2024 chempedia.info