Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymers radical copolymerization

It was recently found that j3-PCPY can also be used as a radical initiator to obtain an alternate copolymer of MMA with styrene [35], which was only possible in the presence of Lewis acids [36,37] in the past. The kinetics of the system has been formulated as Rp a[/3-PCPY] a[MMA] (l/a[Styrene] The values of kp /k, and AE were evaluated as 1.43 x 10 L mol -s and 87 kJ/ mol, respectively, for the system. NMR spectroscopy was used to determine the structure composition and stereochemistry of copolymers. Radical copolymerization of AN with styrene [38] by using /3-PCPY as the initiator at 55-65°C also resulted in an alternate copolymer. Rp is a direct function of /3-PCPY and AN, and is inversely related to styrene. [Pg.377]

Styrene-butadiene rubber is prepared from the free-radical copolymerization of one part by weight of styrene and three parts by weight of 1,3-butadiene. The butadiene is incorporated by both 1,4-addition (80%) and 1,2-addition (20%). The configuration around the double bond of the 1,4-adduct is about 80% trans. The product is a random copolymer with these general features ... [Pg.1065]

Fig. 30. Synthesis of an acid-labile copolymer by radical copolymerization using a latent HOST, followed by selective deprotection (89). Fig. 30. Synthesis of an acid-labile copolymer by radical copolymerization using a latent HOST, followed by selective deprotection (89).
In all manufacturing processes, grafting is achieved by the free-radical copolymerization of styrene and acrylonitrile monomers in the presence of an elastomer. Ungrafted styrene—acrylonitrile copolymer is formed during graft polymerization and/or added afterward. [Pg.203]

Free-Radical Gopolymerization. Examples of the types of copolymers formed by free-radical copolymerizations are shown ia equations 18—20, where S = styrene [100-42-5] B = butadiene [106-99-0] and AIBN = azobisisobutyronitrile [78-67-1] (see Initiators) (27—29). [Pg.179]

Radical copolymerization is used in the manufacturing of random copolymers of acrylamide with vinyl monomers. Anionic copolymers are obtained by copolymerization of acrylamide with acrylic, methacrylic, maleic, fu-maric, styrenesulfonic, 2-acrylamide-2-methylpro-panesulfonic acids and its salts, etc., as well as by hydrolysis and sulfomethylation of polyacrylamide Cationic copolymers are obtained by copolymerization of acrylamide with jV-dialkylaminoalkyl acrylates and methacrylates, l,2-dimethyl-5-vinylpyridinum sulfate, etc. or by postreactions of polyacrylamide (the Mannich reaction and Hofmann degradation). Nonionic copolymers are obtained by copolymerization of acrylamide with acrylates, methacrylates, styrene derivatives, acrylonitrile, etc. Copolymerization methods are the same as the polymerization of acrylamide. [Pg.69]

MMA and DMAPMA poly(MMA-co-DMAPMA) 23, obtained by radical copolymerization, can produce a photografting reaction with acrylonitrile (AN) using BP as the initiator [61]. The formation of a graft copolymer, poly[(MMA -c<7-DMAPMA)- -AN] was confirmed by FT-IR spectrophotometry. Based on ESR studies and end group analysis, the mechanism of grafting reaction is proposed as follows ... [Pg.552]

Several wide-porous affinity and size-exclusion chromatographic supports were prepared by Ivanov, Zubov et al. by means of acylation of aminopropyl-glass supports by copolymers of N-vinyl pyrrolidone (N-VP,1) and acryloyl chloride (AC,2), M = 7700 and 35000 respectively [50, 51]. The copolymers prepared by free radical copolymerization contain their units almost in equimolar proportion, with high tendency to alternation expected from the copolymerization parameters (rj = 0.035, r2 = 0.15 [52]). Residual carbonyl chloride groups of the chemisorbed copolymer could be transformed to 2-hydroxyethylamides which were solely... [Pg.153]

As early as 1940 it has been established9 that diketene does not polymerize by a radical mechanism. It has, however, been shown later10 that it undergoes reactions of radical copolymerization with many vinyl monomers11. In this reaction the double bond is involved and the lactone ring is preserved in the copolymer. [Pg.99]

It has been shown by Schulz and Kern2 J that the radical polymerization of acrolein can take the course of the 1,2-mechanism as well as that of the 1,4- or 3,4-mechanism leading to formylethylene, oxy-2-propenylene, or oxy-2-propenylidene units, respectively. This behaviour of acrolein and its derivatives seems to be also retained to a certain extent, in the radical copolymerization of 4 with AN causing a decrease fo the content of aldehyde groups in the copolymers. [Pg.103]

One final point should be made. The observation of significant solvent effects on kp in homopolymerization and on reactivity ratios in copolymerization (Section 8.3.1) calls into question the methods for reactivity ratio measurement which rely on evaluation of the polymer composition for various monomer feed ratios (Section 7.3.2). If solvent effects arc significant, it would seem to follow that reactivity ratios in bulk copolymerization should be a function of the feed composition.138 Moreover, since the reaction medium alters with conversion, the reactivity ratios may also vary with conversion. Thus the two most common sources of data used in reactivity ratio determination (i.e. low conversion composition measurements and composition conversion measurements) are potentially flawed. A corollary of this statement also provides one explanation for any failure of reactivity ratios to predict copolymer composition at high conversion. The effect of solvents on radical copolymerization remains an area in need of further research. [Pg.361]

One of the major advantages of radical polymerization over most other forms of polymerization, (anionic, cationic, coordination) is that statistical copolymers can be prepared from a very wide range of monomer types that can contain various unprotected functionalities. Radical copolymerization and the factors that influence copolymer structure have been discussed in Chapter 7. Copolymerization of macromonomers by NMP, ATRP and RAFT is discussed in Section 9.10.1. [Pg.525]

Extensive work on radical copolymerization has shown that the composition in a binary copolymer, consisting of monomers Mi and M2, is determined by four rate constants ky for a propagating chain ending with adding to monomer Mj. [Pg.6]

However, ionic copolymerizations are much more selective than radical copolymerizations and the number of copolymer pairs which undergo ionic copolymerization is relatively limited. Cross-propagation rarely occurs between monomer pairs... [Pg.6]

Siloxane Containing Graft and Segmented Copolymers by Free-Radical Copolymerization... [Pg.54]

The synthesis of PDMS macromonomers with vinyl silane end-groups and their free-radical copolymerization with vinyl acetate, leading to poly(vinyl acetate)-PDMS graft copolymers, was described 346). The copolymers produced were later hydrolyzed to obtain poly(vinyl alcohol)-PDMS graft copolymers. [Pg.56]

Free-radical copolymerization of vinyl acetate with various vinyl siloxane monomers was described 345). Reactions were conducted in benzene at 60 °C using AIBN as the initiator. Reactivity ratios were determined. Selective hydrolysis of the vinyl acetate units in the copolymer backbone was achieved using an aqueous sodium hy-droxide/THF mixture. The siloxane content and degree of hydrolysis were determined by H-NMR. [Pg.57]

Recently it has been shown that anionic functionalization techniques can be applied to the synthesis of macromonomers — macromolecular monomers — i.e. linear polymers fitted at chain end with a polymerizable unsaturation, most commonly styrene or methacrylic ester 69 71). These species in turn provide easy access to graft copolymers upon radical copolymerization with vinylic or acrylic monomers. [Pg.157]

The chief application of macromonomers is, however, to provide easy access to graft copolymers 69,70,71,84,851 by free radical copolymerization with a vinylic or acrylic comonomer. This grafting through process offers graft length control and provides randomness of graft distribution. [Pg.159]

The electrophilic functions most commonly used in grafting onto processes are ester 141 144), benzylic halide 145,146) and oxirane, 47). Other functions such as nitrile or anhydride could be used as well. The backbone is a homopolymer (such as PMMA) or a copolymer containing both functionalized and unfunctionalized units. Such species can be obtained either by free radical copolymerization (e.g. styrene-acrylonitrile copolymer) or by partial chemical modification of a homopolymer (e.g. [Pg.169]

Graft copolymers can also be made by free radical copolymerization of a macromonomer with an acrylic or vinylic comonomer, as mentionned earlier 69-71>. [Pg.170]

Emulsion breakers are made from acrylic acid or methacrylic acid copolymerized with hydrophilic monomers [148]. The acid groups of acrylic acid and methacrylic acid are oxalkylated by a mixture of polyglycols and polyglycol ethers to provide free hydroxy groups on the molecule. The copolymers are made by a conventional method, for example, by free radical copolymerization in solution, emulsion, or suspension. The oxalkylation is performed in the presence of an acid catalyst, the acid being neutralized by an amine when the reaction is complete. [Pg.335]

Monomer concentrations Ma a=, ...,m) in a reaction system have no time to alter during the period of formation of every macromolecule so that the propagation of any copolymer chain occurs under fixed external conditions. This permits one to calculate the statistical characteristics of the products of copolymerization under specified values Ma and then to average all these instantaneous characteristics with allowance for the drift of monomer concentrations during the synthesis. Such a two-stage procedure of calculation, where first statistical problems are solved before dealing with dynamic ones, is exclusively predetermined by the very specificity of free-radical copolymerization and does not depend on the kinetic model chosen. The latter gives the explicit dependencies of the instantaneous statistical characteristics on monomers concentrations and the rate constants of the elementary reactions. [Pg.176]

The functionality of the end groups were also determined by NMR or UV analysis which should provide identical molecular weights for perfectly monofunctional materials. As can be seen in Table I, a good correspondence was obtained. Incorporation of the macromonomers into copolymers via free radical copolymerization can also be used as a check on functionality since nonfunctional materials obviously will not be incorporated. Proton NMR was used to confirm the amount of PSX... [Pg.90]

Free-radical copolymerization of trimethyl- or tributylvinyltin with styrene or methyl methacrylate results in low ( 10%) yield of copolymer. Moreover, both the reaction rate and viscosity decrease considerably with higher vinyltin content in the starting mixture 49). These findings imply that organotin monomers tend to inhibit free-radical copolymerization. [Pg.118]

Andrianov and Zhdanov have developed a method for the synthesis of polymers containing heterochain and carbon-chain units by free-radical copolymerization of metal-containing polyorganosiloxanes bearing a pendant vinyl group with vinyl monomers. The copolymers thus obtained display increased thermal stability and can be used for the production of laminated plastics, adhesives and other valuable materials 53),... [Pg.119]

It is known that the polymerization of MMA. .. SnCl4 and (MMA)2. .. SnCl complexes (MMA = methyl methacrylate) yields a polymer which predominantly exhibits an isotactic structure90). From the analogy between these complexes and those discovered by the author of this article (MA. .. SnR3), it can be suggested that free-radical copolymerization of MA with trialkylstannyl methacrylates yields copolymers mainly exhibiting configuration19). [Pg.123]

When studying the free-radical copolymerization of methacrylic and acrylic acids with vinyl monomers, it was established that the addition of catalytic amounts of SnCl and (C6Hs)3SnH has a marked effect on the copolymer composition. It was found that complexes are formed by charge transfer between unsaturated acids and the above tin compounds. It has been suggested that the change in polymer composition is caused by the interaction of the tin compounds with a transition complex resulting in a decrease of the resonance stabilization of the latter 94,). [Pg.128]

This strategy was first realized by Lozinsky et al., who studied the redox-initiated free-radical copolymerization of thermosensitive N-vinylcaprolactam with hydrophilic N-vinylimidazole at different temperatures, as well as by Chi Wu and coworkers. Lozinsky presents an extensive review of the experimental approaches, both already described in the literature and potential new ones, to chemical synthesis of protein-like copolymers capable of forming core-shell nanostructures in a solution. [Pg.12]


See other pages where Copolymers radical copolymerization is mentioned: [Pg.459]    [Pg.459]    [Pg.6]    [Pg.7]    [Pg.106]    [Pg.395]    [Pg.400]    [Pg.597]    [Pg.603]    [Pg.916]    [Pg.19]    [Pg.50]    [Pg.54]    [Pg.56]    [Pg.916]    [Pg.185]    [Pg.276]    [Pg.357]    [Pg.484]    [Pg.21]    [Pg.114]    [Pg.12]   


SEARCH



Copolymer radical

Copolymerization Copolymers

Living radical copolymerization gradient copolymers

Radical copolymerization

Siloxane Containing Graft and Segmented Copolymers by Free-Radical Copolymerization

© 2024 chempedia.info