Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerization terpolymerization

It has been pointed out that analysis of terpolymerization data or copolymerization with chain transfer could, in principle, provide a test of the model. 5 However, to date experimental uncertainty has prevented this. [Pg.349]

Terpolymerizations or ternary copolymerizations, as the names suggest, are polymerizations involving three monomers. Most industrial copolymerizations involve three or more monomers. The statistics of terpolymerization were worked out by Alfrey and Goldfinger in 1944.111 If we assume terminal model kinetics, ternary copolymerization involves nine distinct propagation reactions (Scheme 7.9). [Pg.357]

The complexity of the terpolymer composition equation (eq. 36) can be reduced to eq. 41 through the use of a modified steady slate assumption (eqs. 38-40), However, while these equations apply to component binary copolymerizations it is not clear that they should apply to terpolymerization even though they appear to work well. It can be noted that when applying the Q-e scheme a terpolymer equation of this form is implied. [Pg.359]

Azeotropic compositions are rare for terpolymerization and Ham 14 has shown that it follows from the simplified eqs. 38-40 that ternary azeotropes should not exist. Nonetheless, a few systems for which a ternary azeotrope exists have now been described (this is perhaps a proof of the limitations of the simplified equations) and equations for predicting whether an azeotropic composition will exist for copolymerizations of three or more monomers have been formulated.20113 This work also shows that a ternary azeotrope can, in principle, exist even in circumstances where there is no azeotropic composition for any of the three possible binary copolymerizations of tire monomers involved. [Pg.359]

Water-soluble dicationic palladium(II) complexes [(R.2P(CH2)3PR.2)Pd-(NCMe)2][BF4]2 proved to be highly active in the carbon monox-ide/ethene copolymerization under biphasic conditions (water-toluene). In the presence of an emulsifier and methanol as activator, the catalytic activity increased by a factor of about three. Also higher olefins could be successfully incorporated into the copolymerization with CO and the terpolymerization with ethene and CO.184... [Pg.79]

Some characteristics of free-radical terpolymerization of tri-butylstannyl methacrylate, styrene and maleic anhydride governed by the pentacoordination state of the tin atom are reported in Refs. 95),96). It is shown that a coordination-bound monomer has a considerable effect on chain initiation and propagation. Copolymerization mainly involves the participation of complex-bound monomers. [Pg.128]

More active zinc phenoxide initiators of the type [Zn(0Ar)2(Et20)2]956 were found to catalyze both the copolymerization of CHO with C02 and the terpolymerization of CHO, PO, and C02 attempts to copolymerize PO and C02 yielded predominantly cyclic carbonates. For example, (332) copolymerizes CHO and C02 at 80 °C and 800 psi to give a copolymer containing 91% syndiotactic polycarbonate linkages (and 9% polyether junctions due to the non-insertion of C02) with good activity (>350g polymer/g [Zn] in 69 h).957 However, the polymerization is not well-controlled (Mw/Mn>2.5). Variation of the phenoxide ligands revealed that (333) is 4 times... [Pg.55]

A microgel of a dz = 76 nm which is suitable for coupling with proteins, can be prepared by emulsion terpolymerization of NjAT -tetramethylene bisacrylamide, n-hexylmethacrylamide and propene acid amide-N-(4-methyl-2-butyl-1,3-diox-olane) [291 ]. The diameter of these microgels may be varied by the concentration of the emulsifier (Fig. 57) and is rather uniform. As the CMC of this system is about 2.5 X10"3 mol SDS/1, it may be assumed that below this value the copolymerization essentially takes place in the monomer droplets, whereas at higher concentrations of SDS preferentially the monomers in micelles are polymerized. [Pg.219]

The water-soluble palladium complex prepared from [Pd(MeCN)4](Bp4)2 and tetrasulfonated DPPP (34, n=3, m=0) catalyzed the copolymerization of CO and ethene in neutral aqueous solutions with much lower activity [21 g copolymer (g Pd) h ] [53] than the organosoluble analogue in methanol. Addition of strong Brpnsted acids with weakly coordinating anions substantially accelerated the reaction, and with a catalyst obtained from the same ligand and from [Pd(OTs)2(MeCN)2] but in the presence of p-toluenesulfonic acid (TsOH) 4 kg copolymer was produced per g Pd in one hour [54-56] (Scheme 7.16). Other tetrasulfonated diphosphines (34, n=2, 4 or 5, m=0) were also tried in place of the DPPP derivative, but only the sulfonated DPPB (n=4) gave a catalyst with considerably higher activity [56], Albeit with lower productivity, these Pd-complexes also catalyze the CO/ethene/propene terpolymerization. [Pg.206]

Water-soluble l,3-bis(di(hydroxyalkyl)phosphino)propane derivatives were thoroughly studied as components of Pd-catalysts for CO/ethene (or other a-olefins) copolymerization and for the terpolymerization of CO and ethene with various a-olefins in aqueous solution (Scheme 7.17) [59], The ligands with long hydroxyalkyl chains consistently gave catalysts with higher activity than sulfonated DPPP and this was even more expressed in copolymerization of CO with a-olefins other than ethene (e.g. propene or 1-hexene). Addition of anionic surfactants, such as dodecyl sulfate (potassium salt) resulted in about doubling the productivity of the CO/ethene copolymerization in a water/methanol (30/2) solvent (1.7 kg vs. 0.9 kg copolymer (g Pd)" h" under conditions of [59]) probably due to the concentration of the cationic Pd-catalyst at the interphase region or around the micelles which solubilize the reactants and products. Unfortunately under such conditions stable emulsions are formed which prevent the re-use... [Pg.207]

Shi L, Lu X-B, Zhang R, Peng X-J, Zhang C-Q, Li J-E, Peng X-M (2006) Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 39 5679-5685... [Pg.46]

Darensbourg DJ, Holtcamp MW (1995) Catalytic activity of zinc(II) phenoxides which possess readily accessible coordination sites. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules 28 7577-7579... [Pg.46]

The two monomers enter into the copolymer in overall amounts determined by their relative concentrations and reactivities. The simultaneous chain polymerization of different monomers can also be carried out with mixtures of three or more monomers. Such polymerizations are generally referred to as multicomponent copolymerizations the term terpolymerization is specifically used for systems of three monomers. [Pg.464]

Terpolymerization, the simultaneous polymerization of three monomers, has become increasingly important from the commercial viewpoint. The improvements that are obtained by copolymerizing styrene with acrylonitrile or butadiene have been mentioned previously. The radical terpolymerization of styrene with acrylonitrile and butadiene increases even further the degree of variation in properties that can be built into the final product. Many other commercial uses of terpolymerization exist. In most of these the terpolymer has two of the monomers present in major amounts to obtain the gross properties desired, with the third monomer in a minor amount for modification of a special property. Thus the ethylene-propylene elastomers are terpolymerized with minor amounts of a diene in order to allow the product to be subsquently crosslinked. [Pg.485]

Styrene-1,3-butadiene copolymers with higher styrene contents (50-70%) are used in latex paints. Styrene and 1,3-butadiene terpolymerized with small amounts of an unsaturated carboxylic acid are used to produce latexes that can be crosslinked through the carboxyl groups. These carboxylated SBR products are used as backing material for carpets. Styrene copolymerized with divinyl benzene yields crosslinked products, which find use in size-exclusion chromatography and as ion-exchange resins (Sec. 9-6). [Pg.529]

In copolymerizations of three monomers there are nine growing steps to be taken into account. From these, six reactivity ratios can be derived. They are difficult to obtain from terpolymerizations and are therefore taken from binary copolymerizations. [Pg.237]

The incorporation of small percentages (<10%) of 3-oximino-2-butanone methacrylate (4) into poly(methyl methacrylate) (PMMA) (Scheme I) results in a four fold increase in polymer sensitivity in the range of 230-260 nm flO.l 11. Presumably, the moderately labile N-O bond is induced to cleave, leading to decarboxylation and main chain scission (Scheme II). The sensitivity is further enhanced by the addition of external sensitizers. Also, preliminary results indicated that terpolymerization with methacrylonitrile would effect an additional increase. These results complement those of Stillwagon (12) who had previously shown that copolymerization of methyl methacrylate with methacrylonitrile increased the polymer s sensitivity to electron beam irradiation. The mole fraction of the comonomers was kept low in order to insure retention of the high resolution properties of PMMA (3.41. [Pg.30]

In an effort to improve PMMA s photosensitivity further, methyl methacrylate has been copolymerized with higher percentages of the a-keto-oxime methacrylate and terpolymerized with varying amounts of methacrylonitrile. The resulting effects on resist properties, e.g., sensitivity, contrast and resolution, and plasma resistance, are reported here. The terpolymers are up to 85 times more sensitive than PMMA, and retain its high resolution characteristics. [Pg.30]

The y-ray induced copolymerization of CO with cyclic hydrocarbons such as cyclohexane, cyclohexene, 4-vinyl-1 -cyclohexene and cyclopentadiene, as well as their terpolymerization with ethyleneimine have been reported 14). [Pg.129]

Spontaneous copolymerization of cyclopentene (CPT) with sulfur dioxide (SOt) suggests the participation of a charge transfer complex in the initiation and propagation step of the copolymerization. The ESR spectrum together with chain transfer and kinetic studies showed the presence of long lived SOg radical. Terpolymerization with acrylonitrile (AN) was analyzed as a binary copolymerization between CPT-SOt complex and free AN, and the dilution effect proved this mechanism. Moderately high polymers showed enhanced thermal stability, corresponding to the increase of AN content in the terpolymer. [Pg.222]

As a development of our studies on charge transfer complexes and polymerization, we reported on the spontaneous copolymerization of cyclopentene and sulfur dioxide (11), and kinetic evidence for the participation of the charge transfer complex in the copolymerization was presented. This paper discusses the terpolymerization of cyclopentene, sulfur dioxide, and acrylonitrile to give further evidence for the charge transfer... [Pg.222]

Considering the terpolymerization of CPT-SO2-AN system as a binary copolymerization of CPT-SO2 complex and free acrylonitrile, the copolymerization equation can be derived as follows, assuming a fast equilibrium. [Pg.228]

One way to achieve this result relies on the change in the relative monomer reactivity following composition drifts. Thus, in a combination ofhigh and low reactivity monomers, the former will preferentially react first, leaving a considerable proportion of the latter for copolymerization when the supply of the high reactive monomer is depleted. This has been confirmed in the terpolymerization of methyl methacrylate/butyl acrylate/vinyl acetate in the presence of the maleate Surfmer reported in Figure 6.49. [Pg.219]

The scope of the spontaneous copolymerization of P(III) monomers has been extended to copolymerizations with more sophisticated regulations of the arrangements of monomeric units in copolymers. They include a 2 1 sequence-ordered binary copolymerization of 43 with 46 (Eq. (27))30) and 1 1 1 sequence-ordered terpolymerizations of 54/acrylate 47jCQ2 (Eq. (28)) 39) and 48/49139 (Eq. (29))40 ... [Pg.86]

Fig. 11. Diagrams of the composition of the terpolymerizations of TECQ, TCNQ, and St, and of TMCQ, TCNQ, and St as binary copolymerizations between TECQ and St and between TMCQ and St, respectively. The lines are calculated using r Kj/Kj) = 15 10 and r2(K2/Ki) = 0.5 0.3 for the terpolymerization of the TECQ-TCNQ-St system ( ), and r](K,/K2) = 7 + 3 and r2(K2/Kj) = 0.7 0.3 for the terpolymerization of the TMCQ-TCNQ-St systrm (O), respectively... Fig. 11. Diagrams of the composition of the terpolymerizations of TECQ, TCNQ, and St, and of TMCQ, TCNQ, and St as binary copolymerizations between TECQ and St and between TMCQ and St, respectively. The lines are calculated using r Kj/Kj) = 15 10 and r2(K2/Ki) = 0.5 0.3 for the terpolymerization of the TECQ-TCNQ-St system ( ), and r](K,/K2) = 7 + 3 and r2(K2/Kj) = 0.7 0.3 for the terpolymerization of the TMCQ-TCNQ-St systrm (O), respectively...
Iwatsuki and Yamashita (46, 48, 50, 52) have provided evidence for the participation of a charge transfer complex in the formation of alternating copolymers from the free radical copolymerization of p-dioxene or vinyl ethers with maleic anhydride. Terpolymerization of the monomer pairs which form alternating copolymers with a third monomer which had little interaction with either monomer of the pair, indicated that the polymerization was actually a copolymerization of the third monomer with the complex (45, 47, 51, 52). Similarly, copolymerization kinetics have been found to be applicable to the free radical polymerization of ternary mixtures of sulfur dioxide, an electron donor monomer, and an electron acceptor monomer (25, 44, 61, 88), as well as sulfur dioxide and two electron donor monomers (42, 80). [Pg.114]

The diradical nature of the intermediate in the copolymerization of monomers through a charge transfer intermediate has been suggested by Zutty et al. (88) as a result of studies on the copolymerization and terpolymerization of monomer systems containing bicycloheptene and sulfur dioxide. The third monomer apparently enters the copolymer chain as a block segment, while the donor-acceptor monomer pair enter the chain in a 1 1 molar ratio, irrespective of the ratio present in the monomer mixture. [Pg.114]

Even in the first publications concerning the copolymerization theory [11, 12] their authors noticed a certain similarity between the processes of copolymerization and distillation of binary liquid mixtures since both of them are described by the same Lord Rayleigh s equations. The origin of the term azeotropic copolymerization comes just from this similarity, when the copolymer composition coincides with monomer feed composition and does not drift with conversion. Many years later the formal similarity in the mathematical description of copolymerization and distillation processes was used again in [13], the authors of which, for the first time, classified the processes of terpolymerization from the viewpoint of their dynamics. The principles on which such a classification for any monomer number m is based are presented in Sect. 5, where there is also demonstrated how these principles can be used for the copolymerization when m = 3 and m = 4. [Pg.4]

When the reactivity ratios ry can be expressed in terms of the parameters of the well-known Q-e scheme of Alfrey-Price [20,157], the condition (4.20) always holds [147, 150] and in the case of terpolymerization the general Eqs. (3.8) and (4.10) transform into the simplified equation [158]. It is rather curious that similar equations have been derived at the end of the 1940s [159] within the framework of the Alfrey-Price scheme, being investigated even for the general case of copolymerization of arbitrary number m of monomer types. [Pg.28]


See other pages where Copolymerization terpolymerization is mentioned: [Pg.453]    [Pg.409]    [Pg.453]    [Pg.409]    [Pg.180]    [Pg.184]    [Pg.115]    [Pg.262]    [Pg.22]    [Pg.23]    [Pg.67]    [Pg.610]    [Pg.136]    [Pg.129]    [Pg.226]    [Pg.231]    [Pg.115]    [Pg.116]    [Pg.8]    [Pg.19]    [Pg.27]    [Pg.30]   
See also in sourсe #XX -- [ Pg.7 , Pg.356 ]




SEARCH



Free radical copolymerization terpolymerization

Multicomponent Copolymerization Terpolymerization

Terpolymerizations

© 2024 chempedia.info