Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerization, glass transition

Most Kaminsky catalysts contain only one type of active center. They produce ethylene—a-olefin copolymers with uniform compositional distributions and quite narrow MWDs which, at their limit, can be characterized by M.Jratios of about 2.0 and MFR of about 15. These features of the catalysts determine their first appHcations in the specialty resin area, to be used in the synthesis of either uniformly branched VLDPE resins or completely amorphous PE plastomers. Kaminsky catalysts have been gradually replacing Ziegler catalysts in the manufacture of certain commodity LLDPE products. They also faciUtate the copolymerization of ethylene with cycHc dienes such as cyclopentene and norhornene (33,34). These copolymers are compositionaHy uniform and can be used as LLDPE resins with special properties. Ethylene—norhornene copolymers are resistant to chemicals and heat, have high glass transitions, and very high transparency which makes them suitable for polymer optical fibers (34). [Pg.398]

The glass-transition temperature in amorphous polymers is also sensitive to copolymerization. Generally, T of a random copolymer falls between the glass-transition temperatures of the respective homopolymers. For example, T for solution-polymerized polybutadiene is —that for solution-polymerized polystyrene is -HlOO°C. A commercial solution random copolymer of butadiene and styrene (Firestone s Stereon) shows an intermediate T of —(48). The glass-transition temperature of the random copolymer can sometimes be related simply as follows ... [Pg.183]

T and are the glass-transition temperatures in K of the homopolymers and are the weight fractions of the comonomers (49). Because the glass-transition temperature is directly related to many other material properties, changes in T by copolymerization cause changes in other properties too. Polymer properties that depend on the glass-transition temperature include physical state, rate of thermal expansion, thermal properties, torsional modulus, refractive index, dissipation factor, brittle impact resistance, flow and heat distortion properties, and minimum film-forming temperature of polymer latex... [Pg.183]

This combination of monomers is unique in that the two are very different chemically, and in thek character in a polymer. Polybutadiene homopolymer has a low glass-transition temperature, remaining mbbery as low as —85° C, and is a very nonpolar substance with Htde resistance to hydrocarbon fluids such as oil or gasoline. Polyacrylonitrile, on the other hand, has a glass temperature of about 110°C, and is very polar and resistant to hydrocarbon fluids (see Acrylonitrile polymers). As a result, copolymerization of the two monomers at different ratios provides a wide choice of combinations of properties. In addition to providing the mbbery nature to the copolymer, butadiene also provides residual unsaturation, both in the main chain in the case of 1,4, or in a side chain in the case of 1,2 polymerization. This residual unsaturation is useful as a cure site for vulcanization by sulfur or by peroxides, but is also a weak point for chemical attack, such as oxidation, especially at elevated temperatures. As a result, all commercial NBR products contain small amounts ( 0.5-2.5%) of antioxidant to protect the polymer during its manufacture, storage, and use. [Pg.516]

SBR is produced by addition copolymerization of styrene and butadiene monomers in either emulsion or solution process. The styrene/butadiene ratio controls the glass transition temperature (To) of the copolymer and thus its stiffness. T ... [Pg.585]

The crystallinity in PET soft drink bottles is about 25%. Because a more crystalline state is normal for PET, the amorphous content is increased intentionally by copolymerization and rapid cooling for the molten PET from the melt to a temperature below the glass transition temperature. Companies which perform high-speed blow molding of PET prefer PET resins made with small amounts of glycol and diacid comonomers. [Pg.537]

TDI isomers, 210 Tear strength tests, 242-243 TEDA. See Triethylene diamine (TEDA) Telechelic oligomers, 456, 457 copolymerization of, 453-454 Telechelics, from polybutadiene, 456-459 TEM technique, 163-164 Temperature, polyamide shear modulus and, 138. See also /3-transition temperature (7)>) Brill temperature Deblocking temperatures //-transition temperature (Ty) Glass transition temperature (7) ) Heat deflection temperature (HDT) Heat distortion temperature (HDT) High-temperature entries Low-temperature entries Melting temperature (Fm) Modulu s - temperature relationship Thermal entries Tensile strength, 3, 242 TEOS. See Tetraethoxysilane (TEOS)... [Pg.602]

Plasticizer and Copolymerization change the glass transition temperature as discussed in Chapter 1. Plasticixers have little effect on Copolymerization can change although less strongly than 7 x. As a result, the basic modulus-temperature and modulus-time curves are shifted as shown in Figure 8 for different compositions. The shift in the modulus-temperature curve is essentially the same as the shift in TK. The shift in the modulus-time curve includes this plus the effect of any change in ()jr... [Pg.53]

Plasticizers and Copolymerization also shift the glass transition responses of the amorphous phase of crystalline polymers. In addition, the degree of Crystallinity and melting point are lowered. The resulting effects on the... [Pg.53]


See other pages where Copolymerization, glass transition is mentioned: [Pg.248]    [Pg.267]    [Pg.286]    [Pg.463]    [Pg.464]    [Pg.29]    [Pg.183]    [Pg.510]    [Pg.566]    [Pg.455]    [Pg.107]    [Pg.111]    [Pg.841]    [Pg.229]    [Pg.180]    [Pg.460]    [Pg.600]    [Pg.535]    [Pg.53]    [Pg.113]    [Pg.183]    [Pg.192]    [Pg.274]    [Pg.146]    [Pg.199]    [Pg.57]    [Pg.84]    [Pg.246]    [Pg.288]    [Pg.224]    [Pg.407]    [Pg.199]    [Pg.46]    [Pg.346]    [Pg.272]    [Pg.238]    [Pg.360]    [Pg.168]    [Pg.250]    [Pg.96]    [Pg.229]   


SEARCH



Copolymerization, glass transition polymers

Glass transition temperature copolymerization

Solution copolymerizations glass transition temperatures

© 2024 chempedia.info