Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerization concentration

The diameter of the polymeric rod obtained is from 14.5 to 15 mm (diameter of PMMA pipe) after copolymerization. Concentration of MMA increases from the pipe wall to its center, and a gradient of refraction index is formed. In this case, defocusing selfocs are obtained. By the same methods, focusing selfocs can also be obtained [41], Very large radial graded-index polymer materials were first prepared by two methods [106] ... [Pg.26]

We saw in the last chapter that the stationary-state approximation is apphc-able to free-radical homopolymerizations, and the same is true of copolymerizations. Of course, it takes a brief time for the stationary-state radical concentration to be reached, but this period is insignificant compared to the total duration of a polymerization reaction. If the total concentration of radicals is constant, this means that the rate of crossover between the different types of terminal units is also equal, or that R... [Pg.426]

An example of a commercial semibatch polymerization process is the early Union Carbide process for Dynel, one of the first flame-retardant modacryhc fibers (23,24). Dynel, a staple fiber that was wet spun from acetone, was introduced in 1951. The polymer is made up of 40% acrylonitrile and 60% vinyl chloride. The reactivity ratios for this monomer pair are 3.7 and 0.074 for acrylonitrile and vinyl chloride in solution at 60°C. Thus acrylonitrile is much more reactive than vinyl chloride in this copolymerization. In addition, vinyl chloride is a strong chain-transfer agent. To make the Dynel composition of 60% vinyl chloride, the monomer composition must be maintained at 82% vinyl chloride. Since acrylonitrile is consumed much more rapidly than vinyl chloride, if no control is exercised over the monomer composition, the acrylonitrile content of the monomer decreases to approximately 1% after only 25% conversion. The low acrylonitrile content of the monomer required for this process introduces yet another problem. That is, with an acrylonitrile weight fraction of only 0.18 in the unreacted monomer mixture, the low concentration of acrylonitrile becomes a rate-limiting reaction step. Therefore, the overall rate of chain growth is low and under normal conditions, with chain transfer and radical recombination, the molecular weight of the polymer is very low. [Pg.279]

Several appHcations have been found for bis(2-chloroethyl) vinylphosphonate as a comonomer imparting flame retardancy for textiles and specialty wood and paper appHcations. Its copolymerization characteristics have been reviewed (76,109). This monomer can be hydrolyzed by concentrated hydrochloric acid to vinylphosphonic acid, polymers of which have photoHthographic plate coating utiHty (see Lithography). It is also an intermediate for the preparation of an oligomeric vinylphosphonate textile finish, Akzo s Fyrol 76 [41222-33-7] (110). [Pg.479]

The effects of increasing the concentration of initiator (i.e., increased conversion, decreased M , and broader PDi) and of reducing the reaction temperature (i.e., decreased conversion, increased M , and narrower PDi) for the polymerizations in ambient-temperature ionic liquids are the same as observed in conventional solvents. May et al. have reported similar results and in addition used NMR to investigate the stereochemistry of the PMMA produced in [BMIM][PFgj. They found that the stereochemistry was almost identical to that for PMMA produced by free radical polymerization in conventional solvents [43]. The homopolymerization and copolymerization of several other monomers were also reported. Similarly to the findings of Noda and Watanabe, the polymer was in many cases not soluble in the ionic liquid and thus phase-separated [43, 44]. [Pg.326]

Keeping the composition of copolymerization media constant the total comonomer concentration of which is varied. The absorbed dose was kept constant at 0.14 KGy for the AM-AANa and at 0.35 KGy for the AM-DAEA-HCl systems. The results are shown in Figs. 4 and 5, which show the rate of polymerization, Rp, the degree of polymerization, and the intrinsic viscosity increase with increasing monomer concentration. At comonomer concentration >2.1 M/L, DPn decreases with increasing comonomer concentration. From the logarithmic plots, exponents of the comonomer concentration for the AM-AANa system were determined to be [17,54]. [Pg.124]

The reported values for the exponent of the monomer concentration for the rate of polymerization were found to be 1.26[61], 1.3[16] for gamma radiation-induced copolymerization of acrylamide with N,N-di-ethyldiallylammonium chloride and methyl chloride salt of /V,N-dimethylaminoethyl methacrylate (DMAEM-MC). Ishigue and Hamielec [34] have shown that the... [Pg.125]

Figure 5 Effect of comonomer concentration on copolymerization of acrylamide with EAEA-HCl. O Rp, % = [tj]. Figure 5 Effect of comonomer concentration on copolymerization of acrylamide with EAEA-HCl. O Rp, % = [tj].
The water solubilities of the functional comonomers are reasonably high since they are usually polar compounds. Therefore, the initiation in the water phase may be too rapid when the initiator or the comonomer concentration is high. In such a case, the particle growth stage cannot be suppressed by the diffusion capture mechanism and the solution or dispersion polymerization of the functional comonomer within water phase may accompany the emulsion copolymerization reaction. This leads to the formation of polymeric products in the form of particle, aggregate, or soluble polymer with different compositions and molecular weights. The yield for the incorporation of functional comonomer into the uniform polymeric particles may be low since some of the functional comonomer may polymerize by an undesired mechanism. [Pg.216]

Soapless seeded emulsion copolymerization has been proposed as an alternative method for the preparation of uniform copolymer microspheres in the submicron-size range [115-117]. In this process, a small part of the total monomer-comonomer mixture is added into the water phase to start the copolymerization with a lower monomer phase-water ratio relative to the conventional direct process to prevent the coagulation and monodispersity defects. The functional comonomer concentration in the monomer-comonomer mixture is also kept below 10% (by mole). The water phase including the initiator is kept at the polymerization temperature during and after the addition of initial monomer mixture. The nucleation takes place by the precipitation of copolymer macromolecules, and initially formed copolymer nuclei collide and form larger particles. After particle formation with the initial lower organic phase-water ratio, an oligomer initiated in the continuous phase is... [Pg.217]

Fig. 1. Comparison of experimental and theoretical values of Mc at free-radical copolymerization of AAm with MBAA as a crosslinking agent CT — total concentration of monomers, C — that of MBAA C = 10 wt% (/), CT = 6.7 g dl-1 (2). From Baselga et al. [18]... Fig. 1. Comparison of experimental and theoretical values of Mc at free-radical copolymerization of AAm with MBAA as a crosslinking agent CT — total concentration of monomers, C — that of MBAA C = 10 wt% (/), CT = 6.7 g dl-1 (2). From Baselga et al. [18]...
To determine the crosslinking density from the equilibrium elastic modulus, Eq. (3.5) or some of its modifications are used. For example, this analysis has been performed for the PA Am-based hydrogels, both neutral [18] and polyelectrolyte [19,22,42,120,121]. For gels obtained by free-radical copolymerization, the network densities determined experimentally have been correlated with values calculated from the initial concentration of crosslinker. Figure 1 shows that the experimental molecular weight between crosslinks considerably exceeds the expected value in a wide range of monomer and crosslinker concentrations. These results as well as other data [19, 22, 42] point to various imperfections of the PAAm network structure. [Pg.119]

Considerable interest was placed on 2-vinylfuran in the years 1930-1950 and a number of patents and publications on its polymerization and copolymerization appeared. This work was aimed at exploring the potential of the new polymer and concentrated therefore, on descriptive aspects of its preparation, properties and possible applications (for bibliographies on this topic, see3, 80 81)). Little was done to shed light on the more fundamental aspects of the systems studied until about 20 years ago. The present publication reviews these later studies. [Pg.69]


See other pages where Copolymerization concentration is mentioned: [Pg.192]    [Pg.195]    [Pg.203]    [Pg.278]    [Pg.279]    [Pg.279]    [Pg.245]    [Pg.246]    [Pg.373]    [Pg.397]    [Pg.400]    [Pg.361]    [Pg.364]    [Pg.476]    [Pg.464]    [Pg.466]    [Pg.185]    [Pg.493]    [Pg.482]    [Pg.21]    [Pg.47]    [Pg.61]    [Pg.69]    [Pg.69]    [Pg.125]    [Pg.145]    [Pg.198]    [Pg.216]    [Pg.217]    [Pg.219]    [Pg.489]    [Pg.490]    [Pg.505]    [Pg.506]    [Pg.507]    [Pg.732]    [Pg.101]    [Pg.64]   
See also in sourсe #XX -- [ Pg.419 ]




SEARCH



Graft copolymerization concentration

Graft copolymerization monomer concentration

© 2024 chempedia.info